137 research outputs found

    Origin of myofibroblasts in liver fibrosis

    Get PDF
    Most chronic liver diseases of all etiologies result in progressive liver fibrosis. Myofibroblasts produce the extracellular matrix, including type I collagen, which constitutes the fibrous scar in liver fibrosis. Normal liver has little type I collagen and no detectable myofibroblasts, but myofibroblasts appear early in experimental and clinical liver injury. The origin of the myofibroblast in liver fibrosis is still unresolved. The possibilities include activation of endogenous mesenchymal cells including fibroblasts and hepatic stellate cells, recruitment from the bone marrow, and transformation of epithelial or endothelial cells to myofibroblasts. In fact, the origin of myofibroblasts may be different for different types of chronic liver diseases, such as cholestatic liver disease or hepatotoxic liver disease. This review will examine our current understanding of the liver myofibroblast

    Expression and Distribution of Ectonucleotidases in Mouse Urinary Bladder

    Get PDF
    Background: Normal urinary bladder function requires bidirectional molecular communication between urothelium, detrusor smooth muscle and sensory neurons and one of the key mediators involved in this intercellular signaling is ATP. Ectonucleotidases dephosphorylate nucleotides and thus regulate ligand exposure to P2X and P2Y purinergic receptors. Little is known about the role of these enzymes in mammalian bladder despite substantial literature linking bladder diseases to aberrant purinergic signaling. We therefore examined the expression and distribution of ectonucleotidases in the mouse bladder since mice offer the advantage of straightforward genetic modification for future studies. Principal Findings: RT-PCR demonstrated that eight members of the ectonucleoside triphosphate diphosphohydrolase (NTPD) family, as well as 5'-nucleotidase (NT5E) are expressed in mouse bladder. NTPD1, NTPD2, NTPD3, NTPD8 and NT5E all catalyze extracellular nucleotide dephosphorylation and in concert achieve stepwise conversion of extracellular ATP to adenosine. Immunofluorescent localization with confocal microscopy revealed NTPD1 in endothelium of blood vessels in the lamina propria and in detrusor smooth muscle cells, while NTPD2 was expressed in cells localized to a region of the lamina propria adjacent to detrusor and surrounding muscle bundles in the detrusor. NTPD3 was urothelial-specific, occurring on membranes of intermediate and basal epithelial cells but did not appear to be present in umbrella cells. Immunoblotting confirmed NTPD8 protein in bladder and immunofluorescence suggested a primary localization to the urothelium. NT5E was present exclusively in detrusor smooth muscle in a pattern complementary with that of NTPD1 suggesting a mechanism for providing adenosine to P1 receptors on the surface of myocytes. Conclusions: Ectonucleotidases exhibit highly cell-specific expression patterns in bladder and therefore likely act in a coordinated manner to regulate ligand availability to purinergic receptors. This is the first study to determine the expression and location of ectonucleotidases within the mammalian urinary bladder

    Optimal MHC-II-restricted tumor antigen presentation to CD4+ T helper cells: the key issue for development of anti-tumor vaccines

    Get PDF
    Present immunoprevention and immunotherapeutic approaches against cancer suffer from the limitation of being not β€œsterilizing” procedures, as very poor protection against the tumor is obtained. Thus newly conceived anti-tumor vaccination strategies are urgently needed. In this review we will focus on ways to provide optimal MHC class II-restricted tumor antigen presentation to CD4+ T helper cells as a crucial parameter to get optimal and protective adaptive immune response against tumor. Through the description of successful preventive or therapeutic experimental approaches to vaccinate the host against the tumor we will show that optimal activation of MHC class II-restricted tumor specific CD4+ T helper cells can be achieved in various ways. Interestingly, the success in tumor eradication and/or growth arrest generated by classical therapies such as radiotherapy and chemotherapy in some instances can be re-interpreted on the basis of an adaptive immune response induced by providing suitable access of tumor-associated antigens to MHC class II molecules. Therefore, focussing on strategies to generate better and suitable MHC class II–restricted activation of tumor specific CD4+ T helper cells may have an important impact on fighting and defeating cancer

    Interplay between CD8Ξ±+ Dendritic Cells and Monocytes in Response to Listeria monocytogenes Infection Attenuates T Cell Responses

    Get PDF
    During the course of a microbial infection, different antigen presenting cells (APCs) are exposed and contribute to the ensuing immune response. CD8Ξ±+ dendritic cells (DCs) are an important coordinator of early immune responses to the intracellular bacteria Listeria monocytogenes (Lm) and are crucial for CD8+ T cell immunity. In this study, we examine the contribution of different primary APCs to inducing immune responses against Lm. We find that CD8Ξ±+ DCs are the most susceptible to infection while plasmacytoid DCs are not infected. Moreover, CD8Ξ±+ DCs are the only DC subset capable of priming an immune response to Lm in vitro and are also the only APC studied that do so when transferred into Ξ²2 microglobulin deficient mice which lack endogenous cross-presentation. Upon infection, CD11b+ DCs primarily secrete low levels of TNFΞ± while CD8Ξ±+ DCs secrete IL-12 p70. Infected monocytes secrete high levels of TNFΞ± and IL-12p70, cytokines associated with activated inflammatory macrophages. Furthermore, co-culture of infected CD8Ξ±+ DCs and CD11b+ DCs with monocytes enhances production of IL-12 p70 and TNFΞ±. However, the presence of monocytes in DC/T cell co-cultures attenuates T cell priming against Lm-derived antigens in vitro and in vivo. This suppressive activity of spleen-derived monocytes is mediated in part by both TNFΞ± and inducible nitric oxide synthase (iNOS). Thus these monocytes enhance IL-12 production to Lm infection, but concurrently abrogate DC-mediated T cell priming

    T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers

    Get PDF
    Introduction: Lymphocyte infiltration (LI) is often seen in breast cancer but its importance remains controversial. A positive correlation of human epidermal growth factor receptor 2 (HER2) amplification and LI has been described, which was associated with a more favorable outcome. However, specific lymphocytes might also promote tumor progression by shifting the cytokine milieu in the tumor. Methods: Affymetrix HG-U133A microarray data of 1,781 primary breast cancer samples from 12 datasets were included. The correlation of immune system-related metagenes with different immune cells, clinical parameters, and survival was analyzed. Results: A large cluster of nearly 600 genes with functions in immune cells was consistently obtained in all datasets. Seven robust metagenes from this cluster can act as surrogate markers for the amount of different immune cell types in the breast cancer sample. An IgG metagene as a marker for B cells had no significant prognostic value. In contrast, a strong positive prognostic value for the T-cell surrogate marker (lymphocyte-specific kinase (LCK) metagene) was observed among all estrogen receptor (ER)-negative tumors and those ER-positive tumors with a HER2 overexpression. Moreover ER-negative tumors with high expression of both IgG and LCK metagenes seem to respond better to neoadjuvant chemotherapy. Conclusions: Precise definitions of the specific subtypes of immune cells in the tumor can be accomplished from microarray data. These surrogate markers define subgroups of tumors with different prognosis. Importantly, all known prognostic gene signatures uniformly assign poor prognosis to all ER-negative tumors. In contrast, the LCK metagene actually separates the ER-negative group into better or worse prognosis

    Modulation of purinergic signaling by NPP-type ectophosphodiesterases

    Get PDF
    Extracellular nucleotides can elicit a wide array of cellular responses by binding to specific purinergic receptors. The level of ectonucleotides is dynamically controlled by their release from cells, synthesis by ectonucleoside diphosphokinases and ectoadenylate kinases, and hydrolysis by ectonucleotidases. One of the four structurally unrelated families of ectonucleotidases is represented by the NPP-type ectophosphodiesterases. Three of the seven members of the NPP family, namely NPP1–3, are known to hydrolyze nucleotides. The enzymatic action of NPP1–3 (in)directly results in the termination of nucleotide signaling, the salvage of nucleotides and/or the generation of new messengers like ADP, adenosine or pyrophosphate. NPP2 is unique in that it hydrolyzes both nucleotides and lysophospholipids and, thereby, generates products that could synergistically promote cell motility. We review here the enzymatic properties of NPPs and analyze current evidence that links their nucleotide-hydrolyzing capability to epithelial and neural functions, the immune response and cell motility

    An Antimicrobial Peptide Regulates Tumor-Associated Macrophage Trafficking via the Chemokine Receptor CCR2, a Model for Tumorigenesis

    Get PDF
    Tumor-associated macrophages (TAMs) constitute a significant part of infiltrating inflammatory cells that are frequently correlated with progression and poor prognosis of a variety of cancers. Tumor cell-produced human Ξ²-defensin-3 (hBD-3) has been associated with TAM trafficking in oral cancer; however, its involvement in tumor-related inflammatory processes remains largely unknown., applying a cross-desensitization strategy of CCR2 and its pharmacological inhibitor (RS102895), respectively, was also carried out. outcome and demonstrates the importance of the innate immune system in the development of tumors

    Cancer: evolutionary, genetic and epigenetic aspects

    Get PDF
    There exist two paradigms about the nature of cancer. According to the generally accepted one, cancer is a by-product of design limitations of a multi-cellular organism (Greaves, Nat Rev Cancer 7:213–221, 2007). The essence of the second resides in the question β€œDoes cancer kill the individual and save the species?” (Sommer, Hum Mutat 3:166–169, 1994). Recent data on genetic and epigenetic mechanisms of cell transformation summarized in this review support the latter point of view, namely that carcinogenesis is an evolutionary conserved phenomenonβ€”a programmed death of an organism. It is assumed that cancer possesses an important function of altruistic nature: as a mediator of negative selection, it serves to preserve integrity of species gene pool and to mediate its evolutionary adjustment. Cancer fulfills its task due apparently to specific killer function, understanding mechanism of which may suggest new therapeutic strategy
    • …
    corecore