25 research outputs found

    Increased permeability-oedema and atelectasis in pulmonary dysfunction after trauma and surgery: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Trauma and surgery may be complicated by pulmonary dysfunction, acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), but the mechanisms are incompletely understood.</p> <p>Methods</p> <p>We evaluated lung capillary protein permeability non-invasively with help of the <sup>67</sup>Ga-transferrin pulmonary leak index (PLI) technique and extravascular lung water (EVLW) by the transpulmonary thermal-dye dilution technique in consecutive, mechanically ventilated patients in the intensive care unit within 24 h of direct, blunt thoracic trauma (n = 5, 2 with ARDS), and within 12 h of indirect trauma by transhiatal oesophagectomy (n = 8), abdominal surgery for cancer (n = 6) and bone surgery (n = 4). We studied transfusion history, haemodynamics, oxygenation and mechanics of the lungs. The lung injury score (LIS, 0–4) was calculated. Plain radiography was also done to judge densities and atelectasis.</p> <p>Results</p> <p>The PLI and EVLW were elevated above normal in 61 and 30% of patients, respectively, and the PLI directly related to the number of red cell concentrates given (r<sub>s </sub>= 0.69, P < 0.001), without group differences. Oxygenation, lung mechanics, radiographic densities and thus the LIS (1.0 [0.25–3.5]) did not relate to PLI and EVLW. However, groups differed in oxygenation and airway pressures and impaired oxygenation related to the number of radiographic quadrants with densities (r<sub>s </sub>= 0.55, P = 0.007). Thoracic trauma patients had a worse oxygenation requiring higher airway pressures and thus higher LIS than the other patient groups, unrelated to PLI and EVLW but attributable to a higher cardiac output and thereby venous admixture. Finally, patients with radiographic signs of atelectasis had more impaired oxygenation and more densities than those without.</p> <p>Conclusion</p> <p>The oxygenation defect and radiographic densities in mechanically ventilated patients with pulmonary dysfunction and ALI/ARDS after trauma and surgery are likely caused by atelectasis rather than by increased permeability-oedema related to red cell transfusion.</p

    Pre-operative pulmonary assessment for patients with hip fracture

    Get PDF
    Hip fracture is a common injury among the elderly. Although patients who receive hip fracture surgery carry the best functional recovery compared to other treatment modalities, the presence of postoperative pulmonary complications, such as atelectasis, pneumonia, and pulmonary thromboembolism, may contribute to increased length of hospital stay, perioperative morbidity, and mortality. This review aims to provide evidence-based recommendations for preoperative assessment and perioperative strategies to reduce the risk of pulmonary complications after hip fracture surgery. Clinical assessment and basic laboratory results are sufficient to stratify the risk of postoperative pulmonary complications. Well-documented risk factors for pulmonary complications include advanced age, poor general health status, current infections, pre-existing cardiopulmonary diseases, hypoalbuminemia, and impaired renal function. Apart from optimizing the patient's medical conditions, interventions such as lung expansion maneuvers and thromboprophylaxis have been proven to be effective in reducing the risk of pulmonary complications after hip fracture surgery

    Being there

    No full text

    Impact of implementing the southampton physiotherapy post-operative screening tool (SPPOST)

    No full text
    corecore