269 research outputs found
Resource-Restricted Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era
Traditional bounds on synchronous Byzantine agreement (BA) and secure multi-party computation (MPC) establish that in absence of a private correlated-randomness setup, such as a PKI,
protocols can tolerate up to of the parties being malicious. The introduction of ``Nakamoto style\u27\u27 consensus, based on Proof-of-Work (PoW) blockchains, put forth a somewhat different flavor of BA,
showing that even a majority of corrupted parties
can be tolerated as long as the majority of the computation resources remain at honest hands. This assumption on honest majority of some resource was also extended to other resources such as stake, space, etc., upon which blockchains achieving Nakamoto-style consensus were built that violated the bound in terms of number of party corruptions. The above state of affairs
begs the question of whether the seeming mismatch is due to different goals and models, or whether the resource-restricting paradigm can be generically used to circumvent the lower bound.
In this work we study this question and formally demonstrate
how the above paradigm changes the rules of the game in cryptographic definitions.
First, we abstract the core properties that the resource-restricting paradigm offers by means of a functionality wrapper, in the UC framework, which when applied to a standard point-to-point network restricts the ability (of the adversary) to send new messages. We show that such a wrapped network can be implemented using the resource-restricting paradigm---concretely, using PoWs and honest majority of computing power---and that the traditional impossibility results fail when the parties have access to such a network. Our construction is in the {\em fresh} Common Reference String (CRS) model---i.e., it assumes a CRS which becomes available to the parties at the same time as to the adversary.
We then present constructions for BA and MPC, which given access to such a network tolerate corruptions without assuming a private correlated randomness setup. We also show how to remove the freshness assumption from the CRS by leveraging the power of a random oracle. Our MPC protocol achieves the standard notion of MPC security, where parties might have dedicated roles, as is for example the case in Oblivious Transfer protocols. This is in contrast to existing solutions basing MPC on PoWs, which associate roles to pseudonyms but do not link these pseudonyms with the actual parties
Limits on WWZ and WW\gamma couplings from p\bar{p}\to e\nu jj X events at \sqrt{s} = 1.8 TeV
We present limits on anomalous WWZ and WW-gamma couplings from a search for
WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p
-> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron
Collider during the 1992-1995 run. The data sample corresponds to an integrated
luminosity of 96.0+-5.1 pb^(-1). Assuming identical WWZ and WW-gamma coupling
parameters, the 95% CL limits on the CP-conserving couplings are
-0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a
form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also
presented.Comment: 11 pages, 2 figures, 2 table
Search for New Physics in e mu X Data at D0 Using Sleuth: A Quasi-Model-Independent Search Strategy for New Physics
We present a quasi-model-independent search for the physics responsible for
electroweak symmetry breaking. We define final states to be studied, and
construct a rule that identifies a set of relevant variables for any particular
final state. A new algorithm ("Sleuth") searches for regions of excess in those
variables and quantifies the significance of any detected excess. After
demonstrating the sensitivity of the method, we apply it to the semi-inclusive
channel e mu X collected in 108 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV
at the D0 experiment during 1992-1996 at the Fermilab Tevatron. We find no
evidence of new high p_T physics in this sample.Comment: 23 pages, 12 figures. Submitted to Physical Review
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
The Dijet Mass Spectrum and a Search for Quark Compositeness in bar{p}p Collisions at sqrt{s} = 1.8 TeV
Using the DZero detector at the 1.8 TeV pbarp Fermilab Tevatron collider, we
have measured the inclusive dijet mass spectrum in the central pseudorapidity
region |eta_jet| < 1.0 for dijet masses greater than 200 Gev/c^2. We have also
measured the ratio of spectra sigma(|eta_jet| < 0.5)/sigma(0.5 < |eta_jet| <
1.0). The order alpha_s^3 QCD predictions are in good agreement with the data
and we rule out models of quark compositeness with a contact interaction scale
< 2.4 TeV at the 95% confidence level.Comment: 11 pages, 4 figures, 2 tables, submitted to Phys. Rev. Let
Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV
A search has been carried out for events in the channel p-barp --> gamma
gamma jet jet. Such a signature can characterize the production of a
non-standard Higgs boson together with a W or Z boson. We refer to this
non-standard Higgs, having standard model couplings to vector bosons but no
coupling to fermions, as a "bosonic Higgs." With the requirement of two high
transverse energy photons and two jets, the diphoton mass (m(gamma gamma))
distribution is consistent with expected background. A 90(95)% C.L. upper limit
on the cross section as a function of mass is calculated, ranging from
0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma
gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a
bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching
ratios and corresponding new mass limit
Zgamma Production in pbarp Collisions at sqrt(s)=1.8 TeV and Limits on Anomalous ZZgamma and Zgammagamma Couplings
We present a study of Z +gamma + X production in p-bar p collisions at
sqrt{S}=1.8 TeV from 97 (87) pb^{-1} of data collected in the eegamma
(mumugamma) decay channel with the D0 detector at Fermilab. The event yield and
kinematic characteristics are consistent with the Standard Model predictions.
We obtain limits on anomalous ZZgamma and Zgammagamma couplings for form factor
scales Lambda = 500 GeV and Lambda = 750 GeV. Combining this analysis with our
previous results yields 95% CL limits |h{Z}_{30}| < 0.36, |h{Z}_{40}| < 0.05,
|h{gamma}_{30}| < 0.37, and |h{gamma}_{40}| < 0.05 for a form factor scale
Lambda=750 GeV.Comment: 17 Pages including 2 Figures. Submitted to PR
Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV
The inclusive cross section for production of isolated photons has been
measured in \pbarp collisions at GeV with the \D0 detector at
the Fermilab Tevatron Collider. The photons span a transverse energy ()
range from 7-49 GeV and have pseudorapidity . This measurement is
combined with to previous \D0 result at GeV to form a ratio
of the cross sections. Comparison of next-to-leading order QCD with the
measured cross section at 630 GeV and ratio of cross sections show satisfactory
agreement in most of the range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001
A Measurement of the W Boson Mass
We report a measurement of the W boson mass based on an integrated luminosity
of 82 pb from \ppbar collisions at TeV recorded in
1994--1995 by the \Dzero detector at the Fermilab Tevatron. We identify W
bosons by their decays to and extract the mass by fitting the transverse
mass spectrum from 28,323 W boson candidates. A sample of 3,563 dielectron
events, mostly due to Z to ee decays, constrains models of W boson production
and the detector. We measure \mw=80.44\pm0.10(stat)\pm0.07(syst)~GeV. By
combining this measurement with our result from the 1992--1993 data set, we
obtain \mw=80.43\pm0.11 GeV.Comment: 11 pages, 5 figure
Probing Hard Color-Singlet Exchange in ppbar Collisions at root-s=630 GeV and 1800 GeV
We present results on dijet production via hard color-singlet exchange in
proton-antiproton collisions at root-s = 630 GeV and 1800 GeV using the DZero
detector. The fraction of dijet events produced via color-singlet exchange is
measured as a function of jet transverse energy, separation in pseudorapidity
between the two highest transverse energy jets, and proton-antiproton
center-of-mass energy. The results are consistent with a color-singlet fraction
that increases with an increasing fraction of quark-initiated processes and
inconsistent with two-gluon models for the hard color-singlet.Comment: 16 pages, 6 figure
- …