3 research outputs found

    Discrete breathers in ϕ4\phi^4 and related models

    Full text link
    We touch upon the wide topic of discrete breather formation with a special emphasis on the the ϕ4\phi^4 model. We start by introducing the model and discussing some of the application areas/motivational aspects of exploring time periodic, spatially localized structures, such as the discrete breathers. Our main emphasis is on the existence, and especially on the stability features of such solutions. We explore their spectral stability numerically, as well as in special limits (such as the vicinity of the so-called anti-continuum limit of vanishing coupling) analytically. We also provide and explore a simple, yet powerful stability criterion involving the sign of the derivative of the energy vs. frequency dependence of such solutions. We then turn our attention to nonlinear stability, bringing forth the importance of a topological notion, namely the Krein signature. Furthermore, we briefly touch upon linearly and nonlinearly unstable dynamics of such states. Some special aspects/extensions of such structures are only touched upon, including moving breathers and dissipative variations of the model and some possibilities for future work are highlighted
    corecore