986 research outputs found

    Unitarity Restoration in the Presence of Closed Timelike Curves

    Full text link
    A proposal is made for a mathematically unambiguous treatment of evolution in the presence of closed timelike curves. In constrast to other proposals for handling the naively nonunitary evolution that is often present in such situations, this proposal is causal, linear in the initial density matrix and preserves probability. It provides a physically reasonable interpretation of invertible nonunitary evolution by redefining the final Hilbert space so that the evolution is unitary or equivalently by removing the nonunitary part of the evolution operator using a polar decomposition.Comment: LaTeX, 17pp, Revisions: Title change, expanded and clarified presentation of original proposal, esp. with regard to Heisenberg picture and remaining in original Hilbert spac

    R-mode Instability of Slowly Rotating Non-isentropic Relativistic Stars

    Get PDF
    We investigate properties of rr-mode instability in slowly rotating relativistic polytropes. Inside the star slow rotation and low frequency formalism that was mainly developed by Kojima is employed to study axial oscillations restored by Coriolis force. At the stellar surface, in order to take account of gravitational radiation reaction effect, we use a near-zone boundary condition instead of the usually imposed boundary condition for asymptotically flat spacetime. Due to the boundary condition, complex frequencies whose imaginary part represents secular instability are obtained for discrete rr-mode oscillations in some polytropic models. It is found that such discrete rr-mode solutions can be obtained only for some restricted polytropic models. Basic properties of the solutions are similar to those obtained by imposing the boundary condition for asymptotically flat spacetime. Our results suggest that existence of a continuous part of spectrum cannot be avoided even when its frequency becomes complex due to the emission of gravitational radiation.Comment: 10 pages, 4 figures, accepted for publlication in PR

    The rotational modes of relativistic stars: Numerical results

    Full text link
    We study the inertial modes of slowly rotating, fully relativistic compact stars. The equations that govern perturbations of both barotropic and non-barotropic models are discussed, but we present numerical results only for the barotropic case. For barotropic stars all inertial modes are a hybrid mixture of axial and polar perturbations. We use a spectral method to solve for such modes of various polytropic models. Our main attention is on modes that can be driven unstable by the emission of gravitational waves. Hence, we calculate the gravitational-wave growth timescale for these unstable modes and compare the results to previous estimates obtained in Newtonian gravity (i.e. using post-Newtonian radiation formulas). We find that the inertial modes are slightly stabilized by relativistic effects, but that previous conclusions concerning eg. the unstable r-modes remain essentially unaltered when the problem is studied in full general relativity.Comment: RevTeX, 29 pages, 31 eps figure

    Nonexistence of marginally trapped surfaces and geons in 2+1 gravity

    Full text link
    We use existence results for Jang's equation and marginally outer trapped surfaces (MOTSs) in 2+1 gravity to obtain nonexistence of geons in 2+1 gravity. In particular, our results show that any 2+1 initial data set, which obeys the dominant energy condition with cosmological constant \Lambda \geq 0 and which satisfies a mild asymptotic condition, must have trivial topology. Moreover, any data set obeying these conditions cannot contain a MOTS. The asymptotic condition involves a cutoff at a finite boundary at which a null mean convexity condition is assumed to hold; this null mean convexity condition is satisfied by all the standard asymptotic boundary conditions. The results presented here strengthen various aspects of previous related results in the literature. These results not only have implications for classical 2+1 gravity but also apply to quantum 2+1 gravity when formulated using Witten's solution space quantization.Comment: v3: Elements from the original two proofs of the main result have been combined to give a single proof, thereby circumventing an issue with the second proof associated with potential blow-ups of solutions to Jang's equation. To appear in Commun. Math. Phy

    Differential rotation of nonlinear r-modes

    Full text link
    Differential rotation of r-modes is investigated within the nonlinear theory up to second order in the mode amplitude in the case of a slowly-rotating, Newtonian, barotropic, perfect-fluid star. We find a nonlinear extension of the linear r-mode, which represents differential rotation that produces large scale drifts of fluid elements along stellar latitudes. This solution includes a piece induced by first-order quantities and another one which is a pure second-order effect. Since the latter is stratified on cylinders, it cannot cancel differential rotation induced by first-order quantities, which is not stratified on cylinders. It is shown that, unlikely the situation in the linearized theory, r-modes do not preserve vorticity of fluid elements at second-order. It is also shown that the physical angular momentum and energy of the perturbation are, in general, different from the corresponding canonical quantities.Comment: 9 pages, revtex4; section III revised, comments added in Introduction and Conclusions, references updated; to appear in Phys. Rev.

    Spacetime Information

    Get PDF
    In usual quantum theory, the information available about a quantum system is defined in terms of the density matrix describing it on a spacelike surface. This definition must be generalized for extensions of quantum theory which do not have a notion of state on a spacelike surface. It must be generalized for the generalized quantum theories appropriate when spacetime geometry fluctuates quantum mechanically or when geometry is fixed but not foliable by spacelike surfaces. This paper introduces a four-dimensional notion of the information available about a quantum system's boundary conditions in the various sets of decohering histories it may display. The idea of spacetime information is applied in several contexts: When spacetime geometry is fixed the information available through alternatives restricted to a spacetime region is defined. The information available through histories of alternatives of general operators is compared to that obtained from the more limited coarse- grainings of sum-over-histories quantum mechanics. The definition of information is considered in generalized quantum theories. We consider as specific examples time-neutral quantum mechanics with initial and final conditions, quantum theories with non-unitary evolution, and the generalized quantum frameworks appropriate for quantum spacetime. In such theories complete information about a quantum system is not necessarily available on any spacelike surface but must be searched for throughout spacetime. The information loss commonly associated with the ``evolution of pure states into mixed states'' in black hole evaporation is thus not in conflict with the principles of generalized quantum mechanics.Comment: 47pages, 2 figures, UCSBTH 94-0

    Unitarity of Quantum Theory and Closed Time-Like Curves

    Get PDF
    Interacting quantum fields on spacetimes containing regions of closed timelike curves (CTCs) are subject to a non-unitary evolution XX. Recently, a prescription has been proposed, which restores unitarity of the evolution by modifying the inner product on the final Hilbert space. We give a rigorous description of this proposal and note an operational problem which arises when one considers the composition of two or more non-unitary evolutions. We propose an alternative method by which unitarity of the evolution may be regained, by extending XX to a unitary evolution on a larger (possibly indefinite) inner product space. The proposal removes the ambiguity noted by Jacobson in assigning expectation values to observables localised in regions spacelike separated from the CTC region. We comment on the physical significance of the possible indefiniteness of the inner product introduced in our proposal.Comment: 13 pages, LaTeX. Final revised paper to be published in Phys Rev D. Some changes are made to expand our discussion of Anderson's Proposal for restoring unitarit

    Evolving Lorentzian Wormholes

    Full text link
    Evolving Lorentzian wormholes with the required matter satisfying the Energy conditions are discussed. Several different scale factors are used and the corresponding consequences derived. The effect of extra, decaying (in time) compact dimensions present in the wormhole metric is also explored and certain interesting conclusions are derived for the cases of exponential and Kaluza--Klein inflation.Comment: 10 pages( RevTex, Twocolumn format), Two figures available on request from the first author. transmission errors corrected

    Unitarity and Causality in Generalized Quantum Mechanics for Non-Chronal Spacetimes

    Full text link
    Spacetime must be foliable by spacelike surfaces for the quantum mechanics of matter fields to be formulated in terms of a unitarily evolving state vector defined on spacelike surfaces. When a spacetime cannot be foliated by spacelike surfaces, as in the case of spacetimes with closed timelike curves, a more general formulation of quantum mechanics is required. In such generalizations the transition matrix between alternatives in regions of spacetime where states {\it can} be defined may be non-unitary. This paper describes a generalized quantum mechanics whose probabilities consistently obey the rules of probability theory even in the presence of such non-unitarity. The usual notion of state on a spacelike surface is lost in this generalization and familiar notions of causality are modified. There is no signaling outside the light cone, no non-conservation of energy, no ``Everett phones'', and probabilities of present events do not depend on particular alternatives of the future. However, the generalization is acausal in the sense that the existence of non-chronal regions of spacetime in the future can affect the probabilities of alternatives today. The detectability of non-unitary evolution and violations of causality in measurement situations are briefly considered. The evolution of information in non-chronal spacetimes is described.Comment: 40pages, UCSBTH92-0

    Torsion cycles as non-local magnetic sources in non-orientable spaces

    Full text link
    Non-orientable spaces can appear to carry net magnetic charge, even in the absence of magnetic sources. It is shown that this effect can be understood as a physical manifestation of the existence of torsion cycles of codimension one in the homology of space.Comment: 17 pages, 4 figure
    • …
    corecore