361 research outputs found

    Phantom Field with O(N) Symmetry in Exponential Potential

    Full text link
    In this paper, we study the phase space of phantom model with O(\emph{N}) symmetry in exponential potential. Different from the model without O(\emph{N}) symmetry, the introduction of the symmetry leads to a lower bound w>−3w>-3 on the equation of state for the existence of stable phantom dominated attractor phase. The reconstruction relation between the potential of O(\textit{N}) phantom system and red shift has been derived.Comment: 5 pages, 3 figures, replaced with the version to appear on Phys. Rev.

    New mechanism to cross the phantom divide

    Full text link
    Recently, type Ia supernovae data appear to support a dark energy whose equation of state ww crosses -1, which is a much more amazing problem than the acceleration of the universe. We show that it is possible for the equation of state to cross the phantom divide by a scalar field in the gravity with an additional inverse power-law term of Ricci scalar in the Lagrangian. The necessary and sufficient condition for a universe in which the dark energy can cross the phantom divide is obtained. Some analytical solutions with w<−1w<-1 or w>−1w>-1 are obtained. A minimal coupled scalar with different potentials, including quadratic, cubic, quantic, exponential and logarithmic potentials are investigated via numerical methods, respectively. All these potentials lead to the crossing behavior. We show that it is a robust result which is hardly dependent on the concrete form of the potential of the scalar.Comment: 11 pages, 5 figs, v3: several references added, to match the published versio

    Attractor Solution of Phantom Field

    Full text link
    In light of recent study on the dark energy models that manifest an equation of state w<−1w<-1, we investigate the cosmological evolution of phantom field in a specific potential, exponential potential in this paper. The phase plane analysis show that the there is a late time attractor solution in this model, which address the similar issues as that of fine tuning problems in conventional quintessence models. The equation of state ww is determined by the attractor solution which is dependent on the λ\lambda parameter in the potential. We also show that this model is stable for our present observable universe.Comment: 9 pages, 3 ps figures; typos corrected, references updated, this is the final version to match the published versio

    Particle Motion Around Tachyon Monopole

    Full text link
    Recently, Li and Liu have studied global monoole of tachyon in a four dimensional static space-time. We analyze the motion of massless and massive particles around tachyon monopole. Interestingly, for the bending of light rays due to tachyon monopole instead of getting angle of deficit we find angle of surplus. Also we find that the tachyon monopole exerts an attractive gravitational force towards matter.Comment: 14 pages, 7 figure

    Scalar field exact solutions for non-flat FLRW cosmology: A technique from non-linear Schr\"odinger-type formulation

    Full text link
    We report a method of solving for canonical scalar field exact solution in a non-flat FLRW universe with barotropic fluid using non-linear Schr\"{o}dinger (NLS)-type formulation in comparison to the method in the standard Friedmann framework. We consider phantom and non-phantom scalar field cases with exponential and power-law accelerating expansion. Analysis on effective equation of state to both cases of expansion is also performed. We speculate and comment on some advantage and disadvantage of using the NLS formulation in solving for the exact solution.Comment: 12 pages, GERG format, Reference added. accepted by Gen. Relativ. and Gra

    Dynamics of Tachyon and Phantom Field beyond the Inverse Square Potentials

    Full text link
    We investigate the cosmological evolution of the tachyon and phantom-tachyon scalar field by considering the potential parameter Γ\Gamma(=VV"Vâ€Č2=\frac{V V"}{V'^2}) as a function of another potential parameter λ\lambda(=Vâ€ČÎșV3/2=\frac{V'}{\kappa V^{3/2}}), which correspondingly extends the analysis of the evolution of our universe from two-dimensional autonomous dynamical system to the three-dimension. It allows us to investigate the more general situation where the potential is not restricted to inverse square potential and .One result is that, apart from the inverse square potential, there are a large number of potentials which can give the scaling and dominant solution when the function Γ(λ)\Gamma(\lambda) equals 3/23/2 for one or some values of λ∗\lambda_{*} as well as the parameter λ∗\lambda_{*} satisfies condition Eq.(18) or Eq.(19). We also find that for a class of different potentials the dynamics evolution of the universe are actually the same and therefore undistinguishable.Comment: 8 pages, no figure, accepted by The European Physical Journal C(2010), online first, http://www.springerlink.com/content/323417h708gun5g8/?p=dd373adf23b84743b523a3fa249d51c7&pi=

    Holographic Dark Energy and the Universe Expansion Acceleration

    Full text link
    By incorporating the holographic principle in a time-depending Lambda-term cosmology, new physical bounds on the arbitrary parameters of the model can be obtained. Considering then the dark energy as a purely geometric entity, for which no equation of state has to be introduced, it is shown that the resulting range of allowed values for the parameters may explain both the coincidence problem and the universe accelerated expansion, without resorting to any kind of additional structures.Comment: Ordinary LaTex, 8 page

    Phantom with Born-Infield type Lagrangian

    Full text link
    Recent analysis of the observation data indicates that the equation of state of the dark energy might be smaller than -1, which leads to the introduction of phantom models featured by its negative kinetic energy to account for the regime of equation of state w<−1w<-1. In this paper, we generalize the idea to the Born-Infield type Lagrangian with negative kinetic energy term and give the condition for the potential, under which the late time attractor solution exists and also analyze a viable cosmological model in such a scheme.Comment: 13 pages, 6 figures, Reference updated, the final version will be published in Phys. Rev.

    Universal procedure to cure future singularities of dark energy models

    Full text link
    A systematic search for different viable models of the dark energy universe, all of which give rise to finite-time, future singularities, is undertaken, with the purpose to try to find a solution to this common problem. After some work, a universal procedure to cure all future singularities is developed and carefully tested with the help of explicit examples corresponding to each one of the four different types of possible singularities, as classified in the literature. The cases of a fluid with an equation of state which depends on some parameter, of modified gravity non-minimally coupled to a matter Lagrangian, of non-local gravity, and of isotropic turbulence in a dark fluid universe theory are investigated in detail
    • 

    corecore