361 research outputs found
Phantom Field with O(N) Symmetry in Exponential Potential
In this paper, we study the phase space of phantom model with O(\emph{N})
symmetry in exponential potential. Different from the model without O(\emph{N})
symmetry, the introduction of the symmetry leads to a lower bound on the
equation of state for the existence of stable phantom dominated attractor
phase. The reconstruction relation between the potential of O(\textit{N})
phantom system and red shift has been derived.Comment: 5 pages, 3 figures, replaced with the version to appear on Phys. Rev.
New mechanism to cross the phantom divide
Recently, type Ia supernovae data appear to support a dark energy whose
equation of state crosses -1, which is a much more amazing problem than the
acceleration of the universe. We show that it is possible for the equation of
state to cross the phantom divide by a scalar field in the gravity with an
additional inverse power-law term of Ricci scalar in the Lagrangian. The
necessary and sufficient condition for a universe in which the dark energy can
cross the phantom divide is obtained. Some analytical solutions with or
are obtained. A minimal coupled scalar with different potentials,
including quadratic, cubic, quantic, exponential and logarithmic potentials are
investigated via numerical methods, respectively. All these potentials lead to
the crossing behavior. We show that it is a robust result which is hardly
dependent on the concrete form of the potential of the scalar.Comment: 11 pages, 5 figs, v3: several references added, to match the
published versio
Attractor Solution of Phantom Field
In light of recent study on the dark energy models that manifest an equation
of state , we investigate the cosmological evolution of phantom field in
a specific potential, exponential potential in this paper. The phase plane
analysis show that the there is a late time attractor solution in this model,
which address the similar issues as that of fine tuning problems in
conventional quintessence models. The equation of state is determined by
the attractor solution which is dependent on the parameter in the
potential. We also show that this model is stable for our present observable
universe.Comment: 9 pages, 3 ps figures; typos corrected, references updated, this is
the final version to match the published versio
Particle Motion Around Tachyon Monopole
Recently, Li and Liu have studied global monoole of tachyon in a four
dimensional static space-time. We analyze the motion of massless and massive
particles around tachyon monopole. Interestingly, for the bending of light rays
due to tachyon monopole instead of getting angle of deficit we find angle of
surplus. Also we find that the tachyon monopole exerts an attractive
gravitational force towards matter.Comment: 14 pages, 7 figure
Scalar field exact solutions for non-flat FLRW cosmology: A technique from non-linear Schr\"odinger-type formulation
We report a method of solving for canonical scalar field exact solution in a
non-flat FLRW universe with barotropic fluid using non-linear Schr\"{o}dinger
(NLS)-type formulation in comparison to the method in the standard Friedmann
framework. We consider phantom and non-phantom scalar field cases with
exponential and power-law accelerating expansion. Analysis on effective
equation of state to both cases of expansion is also performed. We speculate
and comment on some advantage and disadvantage of using the NLS formulation in
solving for the exact solution.Comment: 12 pages, GERG format, Reference added. accepted by Gen. Relativ. and
Gra
Dynamics of Tachyon and Phantom Field beyond the Inverse Square Potentials
We investigate the cosmological evolution of the tachyon and phantom-tachyon
scalar field by considering the potential parameter () as a function of another potential parameter
(), which correspondingly extends the
analysis of the evolution of our universe from two-dimensional autonomous
dynamical system to the three-dimension. It allows us to investigate the more
general situation where the potential is not restricted to inverse square
potential and .One result is that, apart from the inverse square potential,
there are a large number of potentials which can give the scaling and dominant
solution when the function equals for one or some
values of as well as the parameter satisfies
condition Eq.(18) or Eq.(19). We also find that for a class of different
potentials the dynamics evolution of the universe are actually the same and
therefore undistinguishable.Comment: 8 pages, no figure, accepted by The European Physical Journal
C(2010), online first,
http://www.springerlink.com/content/323417h708gun5g8/?p=dd373adf23b84743b523a3fa249d51c7&pi=
Holographic Dark Energy and the Universe Expansion Acceleration
By incorporating the holographic principle in a time-depending Lambda-term
cosmology, new physical bounds on the arbitrary parameters of the model can be
obtained. Considering then the dark energy as a purely geometric entity, for
which no equation of state has to be introduced, it is shown that the resulting
range of allowed values for the parameters may explain both the coincidence
problem and the universe accelerated expansion, without resorting to any kind
of additional structures.Comment: Ordinary LaTex, 8 page
Phantom with Born-Infield type Lagrangian
Recent analysis of the observation data indicates that the equation of state
of the dark energy might be smaller than -1, which leads to the introduction of
phantom models featured by its negative kinetic energy to account for the
regime of equation of state . In this paper, we generalize the idea to
the Born-Infield type Lagrangian with negative kinetic energy term and give the
condition for the potential, under which the late time attractor solution
exists and also analyze a viable cosmological model in such a scheme.Comment: 13 pages, 6 figures, Reference updated, the final version will be
published in Phys. Rev.
Universal procedure to cure future singularities of dark energy models
A systematic search for different viable models of the dark energy universe,
all of which give rise to finite-time, future singularities, is undertaken,
with the purpose to try to find a solution to this common problem. After some
work, a universal procedure to cure all future singularities is developed and
carefully tested with the help of explicit examples corresponding to each one
of the four different types of possible singularities, as classified in the
literature. The cases of a fluid with an equation of state which depends on
some parameter, of modified gravity non-minimally coupled to a matter
Lagrangian, of non-local gravity, and of isotropic turbulence in a dark fluid
universe theory are investigated in detail
- âŠ