31 research outputs found

    Electromagnetic interactions for the two-body spectator equations

    Get PDF
    This paper presents a new non-associative algebra which is used to (i) show how the spectator (or Gross) two-body equations and electromagnetic currents can be formally derived from the Bethe-Salpeter equation and currents if both are treated to all orders, (ii) obtain explicit expressions for the Gross two-body electromagnetic currents valid to any order, and (iii) prove that the currents so derived are exactly gauge invariant when truncated consistently to any finite order. In addition to presenting these new results, this work complements and extends previous treatments based largely on the analysis of sums of Feynman diagrams.Comment: 44 pages, 14 figure

    Strange vector currents and the OZI-rule

    Get PDF
    We investigate the role of correlated πρ\pi\rho exchange in the extraction of matrix elements of the strange vector current in the proton. We show that a realistic isoscalar spectral function including this effect leads to sizeably reduced strange vector form factors based on the dispersion--theoretical analysis of the nucleons' electromagnetic form factors.Comment: 8 pp, plain LaTeX, uses epsf, 3 figure

    Form factors in RQM approaches: constraints from space-time translations

    Full text link
    Different relativistic quantum mechanics approaches have recently been used to calculate properties of various systems, form factors in particular. It is known that predictions, which most often rely on a single-particle current approximation, can lead to predictions with a very large range. It was shown that accounting for constraints related to space-time translations could considerably reduce this range. It is shown here that predictions can be made identical for a large range of cases. These ones include the following approaches: instant form, front form, and "point-form" in arbitrary momentum configurations and a dispersion-relation approach which can be considered as the approach which the other ones should converge to. This important result supposes both an implementation of the above constraints and an appropriate single-particle-like current. The change of variables that allows one to establish the equivalence of the approaches is given. Some points are illustrated with numerical results for the ground state of a system consisting of scalar particles.Comment: 37 pages, 7 figures; further comments in ps 16 and 19; further references; modified presentation of some formulas; corrected misprint

    The Single-Particle Spectral Function of 16O^{16}{\rm O}

    Full text link
    The influence of short-range correlations on the pp-wave single-particle spectral function in 16O^{16}{\rm O} is studied as a function of energy. This influence, which is represented by the admixture of high-momentum components, is found to be small in the pp-shell quasihole wave functions. It is therefore unlikely that studies of quasihole momentum distributions using the (e,ep)(e,e'p) reaction will reveal a significant contribution of high momentum components. Instead, high-momentum components become increasingly more dominant at higher excitation energy. The above observations are consistent with the energy distribution of high-momentum components in nuclear matter.Comment: 5 pages, RevTeX, 3 figure

    Extended Superscaling of Electron Scattering from Nuclei

    Full text link
    An extended study of scaling of the first and second kinds for inclusive electron scattering from nuclei is presented. Emphasis is placed on the transverse response in the kinematic region lying above the quasielastic peak. In particular, for the region in which electroproduction of resonances is expected to be important, approximate scaling of the second kind is observed and the modest breaking of it is shown probably to be due to the role played by an inelastic version of the usual scaling variable.Comment: LaTeX, 36 pages including 5 color postscript figures and 4 postscript figure

    Covariant description of inelastic electron--deuteron scattering:predictions of the relativistic impulse approximation

    Full text link
    Using the covariant spectator theory and the transversity formalism, the unpolarized, coincidence cross section for deuteron electrodisintegration, d(e,ep)nd(e,e'p)n, is studied. The relativistic kinematics are reviewed, and simple theoretical formulae for the relativistic impulse approximation (RIA) are derived and discussed. Numerical predictions for the scattering in the high Q2Q^2 region obtained from the RIA and five other approximations are presented and compared. We conclude that measurements of the unpolarized coincidence cross section and the asymmetry AϕA_\phi, to an accuracy that will distinguish between different theoretical models, is feasible over most of the wide kinematic range accessible at Jefferson Lab.Comment: 54 pages and 24 figure

    Modeling quark-hadron duality for relativistic, confined fermions

    Full text link
    We discuss a model for the study of quark-hadron duality in inclusive electron scattering based on solving the Dirac equation numerically for a scalar confining linear potential and a vector color Coulomb potential. We qualitatively reproduce the features of quark-hadron duality for all potentials considered, and discuss similarities and differences to previous models that simplified the situation by treating either the quarks or all particles as scalars. We discuss the scaling results for PWIA and FSI, and the approach to scaling using the analog of the Callan-Gross relation for y-scaling.Comment: 38 pages, 21 figure

    Neutron charge form factor at large q2q^2

    Full text link
    The neutron charge form factor GEn(q)G_{En}(q) is determined from an analysis of the deuteron quadrupole form factor FC2F_{C2} data. Recent calculations, based on a variety of different model interactions and currents, indicate that the contributions associated with the uncertain two-body operators of shorter range are relatively small for FC2F_{C2}, even at large momentum transfer qq. Hence, GEn(q)G_{En}(q) can be extracted from FC2F_{C2} at large q2q^2 without undue systematic uncertainties from theory.Comment: 8 pages, 3 figure

    Relativistic Structure of the Deuteron: 1.Electro-disintegration and y-scaling

    Get PDF
    Realistic solutions of the spinor-spinor Bethe-Salpeter equation for the deuteron with realistic interaction kernel including the exchange of pi, sigma, omega, rho, eta and delta mesons, are used to systematically investigate relativistic effects in inclusive quasi-elastic electron-deuteron scattering within the relativistic impulse approximation. Relativistic y-scaling is considered by generalising the non relativistic scaling function to the relativistic case, and it is shown that y-scaling does occur in the usual relativistic scaling variable resulting from the energy conservation in the instant form of dynamics. The present approach of y-scaling is fully covariant, with the deuteron being described by eight components, viz. the 3S_1^{++}, 3S_1^{--}, 3D_1^{++}, 3D_1^{--}, 3P_1^{+-}, 3P_1^{-+}, 1P_1^{+-}, 1P_1^{-+} waves. It is demonstrated that if the negative relative energy states 1P_1, 3P_1 are disregarded, the concept of covariant momentum distributions N(p_0,p), with p_0=M_D/2-\sqrt{p^2+m^2}, can be introduced, and that calculations of lectro-disintegration cross section in terms of these distributions agree within few percents with the exact calculations which include the 1P_1, 3P_1 states, provided the nucleon three momentum |p|\<= 1 GeV/c; in this momentum range, the asymptotic relativistic scaling function is shown to coincide with the longitudinal covariant momentum distribution.Comment: 32 LaTeX pages, 18 eps-figures. Final version to appear in Phys. Rev.

    Relativistic instant-form approach to the structure of two-body composite systems

    Full text link
    A new approach to the electroweak properties of two-particle composite systems is developed. The approach is based on the use of the instant form of relativistic Hamiltonian dynamics. The main novel feature of this approach is the new method of construction of the matrix element of the electroweak current operator. The electroweak current matrix element satisfies the relativistic covariance conditions and in the case of the electromagnetic current also the conservation law automatically. The properties of the system as well as the approximations are formulated in terms of form factors. The approach makes it possible to formulate relativistic impulse approximation in such a way that the Lorentz-covariance of the current is ensured. In the electromagnetic case the current conservation law is ensured, too. The results of the calculations are unambiguous: they do not depend on the choice of the coordinate frame and on the choice of "good" components of the current as it takes place in the standard form of light--front dynamics. Our approach gives good results for the pion electromagnetic form factor in the whole range of momentum transfers available for experiments at present time, as well as for lepton decay constant of pion.Comment: 26 pages, Revtex, 5 figure
    corecore