2,582 research outputs found
Elastocapillary folding of three dimensional micro-structures using water pumped through the wafer via a silicon nitride tube
In this paper we present the first investigation of a batch method for folding of threedimensional micrometer-sized silicon nitride structures by capillary forces. Silicon nitride tubes have been designed and fabricated using DRIE at the center of the planar origami patterns of the structures. Water is brought to the structures by pumping the liquid through the wafer via those tubes. Isolated micro-structures were successfully folded using this method. The potential of this technique for batch self-assembly is discussed
Fabrication of an active nanostencil with integrated microshutters
An active nanostencil, consisting of a thin (200 nm) silicon nitride membrane with attached polysilicon microactuators that can be used to dynamically open and/or close holes in the silicon nitride membrane, is presented. This nanostencil can be used as a shadow mask in an evaporation setup. Main features of the nanostencil are the absence of sacrificial oxide in the final product, strengthening of the membrane by a polysilicon hexagonal structure that is attached directly to the membrane and the use of low-doped regions in the polysilicon to separate the stator and rotor electrically
Recommended from our members
Massively parallel implementation of a high order domain decomposition equatorial ocean model
The present work is about the algorithms and parallel constructs of a spectral element equatorial ocean model. It shows that high order domain decomposition ocean models can be efficiently implemented on massively parallel architectures, such as the Connection Machine Model CM5. The optimized computational efficiency of the parallel spectral element ocean model comes not only from the exponential convergence of the numerical solution, but also from the work-intensive, medium-grained, geometry-based data parallelism. The data parallelism is created to efficiently implement the spectral element ocean model on the distributed-memory massively parallel computer, which minimizes communication among processing nodes. Computational complexity analysis is given for the parallel algorithm of the spectral element ocean model, and the model's parallel performance on the CM5 is evaluated. Lastly, results from a simulation of wind-driven circulation in low-latitude Atlantic Ocean are described
Stability of 1+1 dimensional causal relativistic viscous hydrodynamics
The stability of the 1+1 dimensional solution of Israel-Stewart theory is
investigated. Firstly, the evolution of the temperature and the ratio of the
bulk pressure over the equilibrium pressure of the background is explored. Then
the stability with linear perturbations is studied by using the Lyapunov direct
method. It shows that the shear viscosity may weaken the instability induced by
the large peak of bulk viscosity around the phase transition temperature .Comment: 18 pages, 4 figures, 1 table; to be published in Nuclear Physics
Dimensional Crossover in the Effective Second Harmonic Generation of Films of Random Dielectrics
The effective nonlinear response of films of random composites consisting of
a binary composite with nonlinear particles randomly embedded in a linear host
is theoretically and numerically studied. A theoretical expression for the
effective second harmonic generation susceptibility, incorporating the
thickness of the film, is obtained by combining a modified effective-medium
approximation with the general expression for the effective second harmonic
generation susceptibility in a composite. The validity of the thoretical
results is tested against results obtained by numerical simulations on random
resistor networks. Numerical results are found to be well described by our
theory. The result implies that the effective-medium approximation provides a
convenient way for the estimation of the nonlinear response in films of random
dielectrics.Comment: 9 pages, 2 figures; accepted for publication in Phys. Rev.
- …