9 research outputs found

    Absence of evidence for Palaeoproterozoic eclogite-facies metamorphism in East Antarctica: no record of subduction orogenesis during Nuna development

    Get PDF
    The cratonic elements of proto-Australia, East Antarctica, and Laurentia constitute the nucleus of the Palaeo-Mesoproterozoic supercontinent Nuna, with the eastern margin of the Mawson Continent (South Australia and East Antarctica) positioned adjacent to the western margin of Laurentia. Such reconstructions of Nuna fundamentally rely on palaeomagnetic and geological evidence. In the geological record, eclogite-facies rocks are irrefutable indicators of subduction and collisional orogenesis, yet occurrences of eclogites in the ancient Earth (> 1.5 Ga) are rare. Models for Palaeoproterozoic amalgamation between Australia, East Antarctica, and Laurentia are based in part on an interpretation that eclogite-facies metamorphism and, therefore, collisional orogenesis, occurred in the Nimrod Complex of the central Transantarctic Mountains at c. 1.7 Ga. However, new zircon petrochronological data from relict eclogite preserved in the Nimrod Complex indicate that high-pressure metamorphism did not occur in the Palaeoproterozoic, but instead occurred during early Palaeozoic Ross orogenesis along the active convergent margin of East Gondwana. Relict c. 1.7 Ga zircons from the eclogites have trace-element characteristics reflecting the original igneous precursor, thereby casting doubt on evidence for a Palaeoproterozoic convergent plate boundary along the current eastern margin of the Mawson Continent. Therefore, rather than a Palaeoproterozoic (c. 1.7 Ga) history involving subduction-related continental collision, a pattern of crustal shortening, magmatism, and high thermal gradient metamorphism connected cratons in Australia, East Antarctica, and western Laurentia at that time, leading eventually to amalgamation of Nuna at c. 1.6 Ga.Dillon A. Brown, Laura J. Morrissey, John W. Goodge, Martin Han

    Tectonic model for development of the Byrd Glacier discontinuity and surrounding regions of the Transantarctic Mountains during Neoproterozoic-Early Paleozoic

    Get PDF
    The Byrd Glacier discontinuity us a major boundary crossing the Ross Orogen, with crystalline rocks to the north and primarily sedimentary rocks to the south. Most models for the tectonic development of the Ross Orogen in the central Transantarctic Mountains consits of two-dimensional transects across the belt, but do not adress the major longitudinal contrast at Byrd Glacier. This paper presents a tectonic model centering on the Byrd Glacier discontinuity. Rifting in the Neoproterozoic producede a crustal promontory in the craton margin to the north of Byrd Glacier. Oblique convergence of the terrane (Beardmore microcontinent) during the latest Neroproterozoic and Early Cambrian was accompanied by subduction along the craton margin of East Antarctica. New data presented herein in the support of this hypothesis are U-Pb dates of 545.7 ± 6.8 Ma and 531.0 ± 7.5 Ma on plutonic rocks from the Britannia Range, subduction stepped out, and Byrd Glacier. After docking of the terrane, subduction stepped out, and Byrd Group was deposited during the Atdabanian-Botomian across the inner margin of the terrane. Beginning in the upper Botomian, reactivation of the sutured boundaries of the terrane resulted in an outpouring of clastic sediment and folding and faulting of the Byrd Group

    Cambrian eclogite-facies metamorphism in the central Transantarctic Mountains, East Antarctica: extending the record of early Palaeozoic high-pressure metamorphism along the eastern Gondwanan margin

    No full text
    The Nimrod Complex in the Miller and Geologists ranges of the central Transantarctic Mountains comprises Mesoarchean and Palaeoproterozoic crust that was incorporated into the Ross Orogen during metamorphism and deformation along the eastern Gondwanan convergent margin in the late Neoproterozoic and early Palaeozoic. In the Miller Range, boudinaged mafic domains are hosted within upper-amphibolite- to granulite-facies mylonitic rocks that were deformed during the Ross Orogeny. The mafic rocks preserve evidence of a precursor eclogite-facies mineral assemblage containing garnet, omphacite, amphibole, quartz and rutile. Mineral equilibria forward modelling and Zr-in-rutile thermometry indicate that the eclogite assemblage records peak pressure-temperature conditions of 16–18 kbar and 675–760 °C. A secondary metamorphic assemblage of clinopyroxene-plagioclase symplectite, plagioclase coronae rimming garnet, fine-grained amphibole, and interstitial ilmenite orthopyroxene overprint the high-pressure assemblage. Compositions and modal proportions of retrograde garnet, orthopyroxene and amphibole suggest near isothermal exhumation to conditions of 8–10 kbar and 660–840 °C, followed by a long-lived mid-crustal residence. In-situ LA–ICP–MS UPb dating of zircon and rutile yields concordant ages of 536 ± 14 Ma and 536 ± 20 Ma, respectively. The Cambrian-aged zircons show an absent to weakly negative Eu anomaly signature and flat heavy rare earth element (HREE) distributions that are typical of zircons crystallised in the absence of plagioclase and presence of garnet, and which is diagnostic of eclogite-facies conditions. The Cambrian-aged zircon population contrasts with older, highly discordant Palaeoproterozoic zircons that have negative Eu anomalies and are HREE enriched. These zircons are interpreted to be protolithic, and their ages are consistent with existing geochronology from host rocks in the region. The Cambrian-aged zircon and rutile are inferred to represent eclogite-facies metamorphism associated with Ross orogenesis. The early Palaeozoic eastern Gondwanan margin contains a diverse array of eclogite precursors that document contrasting geodynamic styles. Eclogites in northern Victoria Land and central Tasmania record comparatively warm thermal gradients, short-lived high-pressure conditions, and rapid exhumation within their continental crust hosts, whereas oceanic eclogites in the southern New England Fold Belt record refrigerated, long-lived convergent-margin metamorphism. The Miller Range eclogite-facies rocks in this study appear to have been derived from shallow subduction of ancient continental crust, after which they stalled at thermally elevated mid-crustal depths prior to their final exhumation. The discovery of Cambrian-aged eclogite-facies rocks in the Miller Range expands the spatial footprint of high-pressure metamorphism during the Ross Orogeny along the early Palaeozoic eastern Gondwanan margin.Dillon A. Brown, Martin Hand, Laura J. Morrissey, JohnW.Goodg

    Testing long-term patterns of basin sedimentation by detrital zircon geochronology, Centralian Superbasin, Australia

    No full text
    The definitive version is available at www.blackwell-synergy.comDetrital zircon geochronology of Neoproterozoic to Devonian sedimentary rocks from the Georgina and Amadeus basins has been used to track changes in provenance that reflect the development and inversion of the former Australian Superbasin. Through much of the Neoproterozoic, sediments appear to have been predominantly derived from local sources in the Arunta and Musgrave inliers. Close similarities between the detrital age signatures of late Neoproterozoic sedimentary rocks in the two basins suggests that they were contiguous at this time. A dominant population of 1.2–1.0 Ga zircon in Early Cambrian sediments of the Amadeus Basin reflects the uplift of the Musgrave Inlier during the Petermann Orogeny between 560 and 520 Ma, which shed a large volume of detritus northwards into the Amadeus Basin. Early Cambrian sedimentary rocks in the Georgina Basin have a much smaller proportion of 1.2–1.0 Ga detritus, possibly due to the formation of sub-basins along the northern margin of the Amadeus Basin which might have acted as a barrier to sediment transfer. An influx of 0.6–0.5 Ga zircon towards the end of the Cambrian coincides with the transgression of the Larapintine Sea across central Australia, possibly as a result of intracratonic rifting. Detrital zircon age spectra of sedimentary rocks deposited within this epicontinental sea are very similar to those of coeval sedimentary rocks from the Pacific Gondwana margin, implying that sediment was transported into central Australia from the eastern continental margin. The remarkably consistent ‘Pacific Gondwana’ signature of Cambro-Ordovician sediments in central and eastern Australia reflects a distal source, possibly from east Antarctica or the East African Orogen. The peak of the marine incursion into central Australia in the early to mid Ordovician coincides with granulite-facies metamorphism at mid-crustal depths between the Amadeus and Georgina basins (the Larapinta Event). The presence of the epicontinental sea, the relative lack of a local basement zircon component in Cambro-Ordovician sedimentary rocks and their maturity suggest that metamorphism was not accompanied by mountain building, consistent with an extensional or transtensional setting for this tectonism. Sediments deposited at 435–405 and 365 Ma during the Alice Springs Orogeny have detrital age signatures similar to those of Cambro-Ordovician sedimentary rocks, reflecting uplift and reworking of the older succession into narrow foreland basins adjacent to the orogen.D. W. Maidment, I. S. Williams, M. Han
    corecore