39 research outputs found

    Break-junction tunneling measurements of the high-\u3ci\u3eT\u3c/i\u3e\u3csub\u3e\u3ci\u3ec\u3c/i\u3e\u3c/sub\u3e superconductor Y\u3csub\u3e1\u3c/sub\u3eBa\u3csub\u3e2\u3c/sub\u3eCu\u3csub\u3e3\u3c/sub\u3eO\u3csub\u3e9- ÎŽ \u3c/sub\u3e

    Get PDF
    Current-voltage tunneling characteristics in a high-critical-temperature superconducting material containing predominately Y1Ba2Cu3O9- ÎŽ have been measured using the break-junction technique. Sharp gap structure was observed, with the largest superconductive energy gap measured to be Δ=19.5±1 meV, assuming a superconductor-insulator-superconductor junction. This energy gap corresponds to 2Δ/kBTc=4.8 at T=4 K, for a critical temperature of 93 K (midpoint of the resistive transition)

    Spin polarized tunneling in ferromagnet/unconventional superconductor junctions

    Full text link
    We study tunneling in ferromagnet/unconventional superconductor (F/S) junctions. We include the effects of spin polarization, interfacial resistance, and Fermi wavevector mismatch (FWM) between the F and S regions. Andreev reflection (AR) at the F/S interface, governing tunneling at low bias voltage, is strongly modified by these parameters. The conductance exhibits a very wide variety of features as a function of applied voltage.Comment: Revision includes new figures with angular averages and correction of minor error

    A dc voltage step-up transformer based on a bi-layer \nu=1 quantum Hall system

    Full text link
    A bilayer electron system in a strong magnetic field at low temperatures, with total Landau level filling factor nu =1, can enter a strongly coupled phase, known as the (111) phase or the quantum Hall pseudospin-ferromagnet. In this phase there is a large quantized Hall drag resistivity between the layers. We consider here structures where regions of (111) phase are separated by regions in which one of the layers is depleted by means of a gate, and various of the regions are connected together by wired contacts. We note that with suitable designs, one can create a DC step-up transformer where the output voltage is larger than the input, and we show how to analyze the current flows and voltages in such devices

    Localized surface states in HTSC: Alternative mechanism of zero-bias conductance peaks

    Full text link
    It is shown that the quasiparticle states localized in the vicinity of surface imperfections of atomic size can be responsible for the zero-bias tunneling conductance peaks in high-Tc superconductors. The contribution from these states can be easily separated from other mechanisms using their qualitatively different response on an external magnetic field.Comment: REVTeX, 4 pages, 2 figs; to be published in PR

    Effect of magnetic field on impurity bound states in high-temperature superconductors

    Full text link
    We consider the influence of a magnetic field H on the quasiparticle bound states near scalar impurities in d-wave superconductors. A ``Doppler shift'' in the excitation energies induced by the supercurrent leads to several important effects. At large but finite impurity strength, there are corrections to the energy and width of the impurity-induced resonance, proportional to H^2. On the other hand, in the limit of very strong impurity potential (unitary limit), the bound state is destroyed and acquires a finite width proportional to H/ln H. There are also considerable changes in the asymptotic behaviour of the bound state wave functions.Comment: RevTeX, 5 pages, 2 figure

    A phenomenological theory of zero-energy Andreev resonant states

    Full text link
    A conceptual consideration is given to a zero-energy state (ZES) at the surface of unconventional superconductors. The reflection coefficients in normal-metal / superconductor (NS) junctions are calculated based on a phenomenological description of the reflection processes of a quasiparticle. The phenomenological theory reveals the importance of the sign change in the pair potential for the formation of the ZES. The ZES is observed as the zero-bias conductance peak (ZBCP) in the differential conductance of NS junctions. The split of the ZBCP due to broken time-reversal symmetry states is naturally understood in the present theory. We also discuss effects of external magnetic fields on the ZBCP.Comment: 12 page

    Zero-bias conductance peak splitting due to multiband effect in tunneling spectroscopy

    Full text link
    We study how the multiplicity of the Fermi surface affects the zero-bias peak in conductance spectra of tunneling spectroscopy. As case studies, we consider models for organic superconductors Îș\kappa-(BEDT-TTF)2_2Cu(NCS)2_2 and (TMTSF)2_2ClO4_4. We find that multiplicity of the Fermi surfaces can lead to a splitting of the zero-bias conductance peak (ZBCP). We propose that the presence/absence of the ZBCP splitting is used as a probe to distinguish the pairing symmetry in Îș\kappa-(BEDT-TTF)2_2Cu(NCS)2_2.Comment: 7 pages, 7 figure

    Theory of charge transport in diffusive normal metal / unconventional singlet superconductor contacts

    Get PDF
    We analyze the transport properties of contacts between unconventional superconductor and normal diffusive metal in the framework of the extended circuit theory. We obtain a general boundary condition for the Keldysh-Nambu Green's functions at the interface that is valid for arbitrary transparencies of the interface. This allows us to investigate the voltage-dependent conductance (conductance spectrum) of a diffusive normal metal (DN)/ unconventional singlet superconductor junction in both ballistic and diffusive cases. For d-wave superconductor, we calculate conductance spectra numerically for different orientations of the junctions, resistances, Thouless energies in DN, and transparencies of the interface. We demonstrate that conductance spectra exhibit a variety of features including a VV-shaped gap-like structure, zero bias conductance peak (ZBCP) and zero bias conductance dip (ZBCD). We show that two distinct mechanisms: (i) coherent Andreev reflection (CAR) in DN and (ii) formation of midgap Andreev bound state (MABS) at the interface of d-wave superconductors, are responsible for ZBCP, their relative importance being dependent on the angle α\alpha between the interface normal and the crystal axis of d-wave superconductors. For α=0\alpha=0, the ZBCP is due to CAR in the junctions of low transparency with small Thouless energies, this is similar to the case of diffusive normal metal / insulator /s-wave superconductor junctions. With increase of α\alpha from zero to π/4\pi/4, the MABS contribution to ZBCP becomes more prominent and the effect of CAR is gradually suppressed. Such complex spectral features shall be observable in conductance spectra of realistic high-TcT_c junctions at very low temperature
    corecore