172 research outputs found

    Cultural differences in intimacy: The influence of gender-role ideology and individualism-collectivism

    Get PDF
    Two studies examined emotional intimacy in European Canadian and Chinese Canadian dating relationships. Cultural differences in gender-role ideology and individualism–collectivism were hypothesized to differentially contribute to selfdisclosure and responsiveness, and in turn, intimacy. Study 1 revealed that Chinese Canadians’ lower intimacy relative to European Canadians was mediated by their greater gender-role traditionalism but not by their individualism or collectivism. Study 2 further linked greater gender-role traditionalism to lower self-disclosure, and in turn, lower intimacy. Results also revealed that Chinese Canadians’ lower intimacy mediated their lower relationship satisfaction and higher rate of relationship termination in Study 1, but that Chinese Canadians were not any more likely to terminate their relationships in Study 2

    Competing orders in a magnetic field: spin and charge order in the cuprate superconductors

    Full text link
    We describe two-dimensional quantum spin fluctuations in a superconducting Abrikosov flux lattice induced by a magnetic field applied to a doped Mott insulator. Complete numerical solutions of a self-consistent large N theory provide detailed information on the phase diagram and on the spatial structure of the dynamic spin spectrum. Our results apply to phases with and without long-range spin density wave order and to the magnetic quantum critical point separating these phases. We discuss the relationship of our results to a number of recent neutron scattering measurements on the cuprate superconductors in the presence of an applied field. We compute the pinning of static charge order by the vortex cores in the `spin gap' phase where the spin order remains dynamically fluctuating, and argue that these results apply to recent scanning tunnelling microscopy (STM) measurements. We show that with a single typical set of values for the coupling constants, our model describes the field dependence of the elastic neutron scattering intensities, the absence of satellite Bragg peaks associated with the vortex lattice in existing neutron scattering observations, and the spatial extent of charge order in STM observations. We mention implications of our theory for NMR experiments. We also present a theoretical discussion of more exotic states that can be built out of the spin and charge order parameters, including spin nematics and phases with `exciton fractionalization'.Comment: 36 pages, 33 figures; for a popular introduction, see http://onsager.physics.yale.edu/superflow.html; (v2) Added reference to new work of Chen and Ting; (v3) reorganized presentation for improved clarity, and added new appendix on microscopic origin; (v4) final published version with minor change

    Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis

    Get PDF
    Clostridioides (formerly Clostridium) difficile is a leading cause of healthcare-associated infections. Although considerable progress has been made in the understanding of its genome, the epigenome of C. difficile and its functional impact has not been systematically explored. Here, we perform a comprehensive DNA methylome analysis of C. difficile using 36 human isolates and observe a high level of epigenomic diversity. We discovered an orphan DNA methyltransferase with a well-defined specificity, the corresponding gene of which is highly conserved across our dataset and in all of the approximately 300 global C. difficile genomes examined. Inactivation of the methyltransferase gene negatively impacts sporulation, a key step in C. difficile disease transmission, and these results are consistently supported by multiomics data, genetic experiments and a mouse colonization model. Further experimental and transcriptomic analyses suggest that epigenetic regulation is associated with cell length, biofilm formation and host colonization. These findings provide a unique epigenetic dimension to characterize medically relevant biological processes in this important pathogen. This study also provides a set of methods for comparative epigenomics and integrative analysis, which we expect to be broadly applicable to bacterial epigenomic studies

    Statistical strategies for avoiding false discoveries in metabolomics and related experiments

    Full text link

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Evolutionary economics

    No full text
    corecore