18 research outputs found

    Enhancing the Social Capital of Learning Communities by Using an Ad Hoc Transient Communities Service

    Get PDF
    Fetter, S., Berlanga, A. J., & Sloep, P. B. (2009). Enhancing the Social Capital of Learning Communities by Using an Ad Hoc Transient Communities Service. In M. Spaniol, Q. Li, R. Klamma & R. W. H. Lau (Eds.), Proceedings of the 8th International Conference Advances in Web-based Learning - ICWL 2009 (pp. 150-157). August, 19-21, 2009, Aachen, Germany. Lecture Notes in Computer Science 5686; Berlin, Heidelberg: Springer-Verlag.In online learning, communities can help to enhance learning. However, because of the dynamic nature of communities, attaining and sustaining these communities can be difficult. One aspect that has an influence on, and is influenced by these dynamics is the social capital of a community. Features of social capital are the social network structure, the sense of belonging and, the support received and provided. It is hypothesized that these features can be improved by using Ad Hoc Transient Communities (AHTCs). Through an AHTC learners are brought together for a specific, learning-related goal (‘ad hoc’) and for only a limited amount of time (‘transience’). To test whether the use of AHTCs has a positive influence on the social capital, a learner support service which enables the use of AHTCs is proposed. Furthermore, requirements, pre-requisites, and future research are discussed.The work on this publication has been sponsored by the TENCompetence Integrated Project that is funded by the European Commission's 6th Framework Programme, priority IST/Technology Enhanced Learning. Contract 027087 [http://www.tencompetence.org

    The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogs

    Full text link
    We present an interdisciplinary review of the generalized Cerenkov emission of radiation from uniformly moving sources in the different contexts of classical electromagnetism, superfluid hydrodynamics, and classical hydrodynamics. The details of each specific physical systems enter our theory via the dispersion law of the excitations. A geometrical recipe to obtain the emission patterns in both real and wavevector space from the geometrical shape of the dispersion law is discussed and applied to a number of cases of current experimental interest. Some consequences of these emission processes onto the stability of condensed-matter analogs of gravitational systems are finally illustrated.Comment: Lecture Notes at the IX SIGRAV School on "Analogue Gravity" in Como, Italy from May 16th-21th, 201
    corecore