13 research outputs found

    Photon and dilepton emission rates from high density quark matter

    Full text link
    We compute the rates of real and virtual photon (dilepton) emission from dense QCD matter in the color-flavor locked (CFL) phase, focusing on results at moderate densities (3-5 times the nuclear saturation density) and temperatures T≃80T\simeq80 MeV. We pursue two approaches to evaluate the electromagnetic (e.m.) response of the CFL ground state: (i) a direct evaluation of the photon self energy using quark particle/-hole degrees of freedom, and (ii) a Hidden Local Symmetry (HLS) framework based on generalized mesonic excitations where the ρ\rho meson is introduced as a gauge boson of a local SU(3) color-flavor group. The ρ\rho coupling to generalized two-pion states induces a finite width and allows to address the issue of vector meson dominance (VMD) in the CFL phase. We compare the calculated emissivities (dilepton rates) to those arising from standard hadronic approaches including in-medium effects. For rather large superconducting gaps (several tens of MeV at moderate densities), as suggested by both perturbative and nonperturbative estimates, the dilepton rates from CFL quark matter turn out to be very similar to those obtained in hadronic many-body calculations, especially for invariant masses above M≃0.3M\simeq0.3 GeV. A similar observation holds for (real) photon production.Comment: 18 pages, 12 figure

    A renormalisation group approach to two-body scattering in the presence of long-range forces

    Full text link
    We apply renormalisation-group methods to two-body scattering by a combination of known long-range and unknown short-range potentials. We impose a cut-off in the basis of distorted waves of the long-range potential and identify possible fixed points of the short-range potential as this cut-off is lowered to zero. The expansions around these fixed points define the power countings for the corresponding effective field theories. Expansions around nontrivial fixed points are shown to correspond to distorted-wave versions of the effective-range expansion. These methods are applied to scattering in the presence of Coulomb, Yukawa and repulsive inverse-square potentials.Comment: 22 pages (RevTeX), 4 figure

    Efimov physics beyond universality

    Full text link
    We provide an exact solution of the Efimov spectrum in ultracold gases within the standard two-channel model for Feshbach resonances. It is shown that the finite range in the Feshbach coupling makes the introduction of an adjustable three-body parameter obsolete. The solution explains the empirical relation between the scattering length a_- where the first Efimov state appears at the atom threshold and the van der Waals length l_vdw for open channel dominated resonances. There is a continuous crossover to the closed channel dominated limit, where the scale in the energy level diagram as a function of the inverse scattering length 1/a is set by the intrinsic length r* associated with the Feshbach coupling. Our results provide a number of predictions for non-universal ratios between energies and scattering lengths that can be tested in future experiments.Comment: 6 pages, 4 figures; final versio

    Bibliography

    No full text

    Molecular Approaches to The Design of New Thrombolytic Agents

    No full text
    corecore