34 research outputs found
Coronal Temperature Diagnostic Capability of the Hinode/X-Ray Telescope Based on Self-Consistent Calibration
The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager
that observes the solar corona with unprecedentedly high angular resolution
(consistent with its 1" pixel size). XRT has nine X-ray analysis filters with
different temperature responses. One of the most significant scientific
features of this telescope is its capability of diagnosing coronal temperatures
from less than 1 MK to more than 10 MK, which has never been accomplished
before. To make full use of this capability, accurate calibration of the
coronal temperature response of XRT is indispensable and is presented in this
article. The effect of on-orbit contamination is also taken into account in the
calibration. On the basis of our calibration results, we review the
coronal-temperature-diagnostic capability of XRT
EUV Analysis of a Quasi-Static Coronal Loop Structure
Decaying active region 10942 is investigated from 4:00-16:00 UT on February
24, 2007 using a suite of EUV observing instruments. Results from Hinode/EIS,
STEREO and TRACE show that although the active region has decayed and no
sunspot is present, the physical mechanisms that produce distinguishable loop
structures, spectral line broadening, and plasma flows still occur. A coronal
loop that appears as a blue-shifted structure in Doppler maps is apparent in
intensity images of log(T) = 6.0-6.3 ions. The loop structure is found to be
anti-correlated with spectral line broadening generally attributed to
nonthermal velocities. This coronal loop structure is investigated physically
(temperature, density, geometry) and temporally. Lightcurves created from
imaging instruments show brightening and dimming of the loop structure on two
different time scales; short pulses of 10-20 min and long duration dimming of
2-4 hours until its disappearance. The coronal loop structure, formed from
relatively blue-shifted material that is anti-correlated with spectral line
broadening, shows a density of 10^10 to 10^9.3 cm-3 and is visible for longer
than characteristic cooling times. The maximum nonthermal spectral line
broadenings are found to be adjacent to the footpoint of the coronal loop
structure.Comment: 26 pages, 13 figures; Solar Physics 201
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Perspectives in Global Helioseismology, and the Road Ahead
We review the impact of global helioseismology on key questions concerning
the internal structure and dynamics of the Sun, and consider the exciting
challenges the field faces as it enters a fourth decade of science
exploitation. We do so with an eye on the past, looking at the perspectives
global helioseismology offered in its earlier phases, in particular the
mid-to-late 1970s and the 1980s. We look at how modern, higher-quality, longer
datasets coupled with new developments in analysis, have altered, refined, and
changed some of those perspectives, and opened others that were not previously
available for study. We finish by discussing outstanding challenges and
questions for the field.Comment: Invited review; to appear in Solar Physics (24 pages, 6 figures
Supernovae Origin for the Low-latitude Intermediate-velocity Arch and the North Celestial Pole Loop
info:eu-repo/semantics/publishe
Complex K: Supernova Origin of Anomalous-velocity H I Structure
info:eu-repo/semantics/publishe