85 research outputs found
Neutrino oscillations: Entanglement, energy-momentum conservation and QFT
We consider several subtle aspects of the theory of neutrino oscillations
which have been under discussion recently. We show that the -matrix
formalism of quantum field theory can adequately describe neutrino oscillations
if correct physics conditions are imposed. This includes space-time
localization of the neutrino production and detection processes. Space-time
diagrams are introduced, which characterize this localization and illustrate
the coherence issues of neutrino oscillations. We discuss two approaches to
calculations of the transition amplitudes, which allow different physics
interpretations: (i) using configuration-space wave packets for the involved
particles, which leads to approximate conservation laws for their mean energies
and momenta; (ii) calculating first a plane-wave amplitude of the process,
which exhibits exact energy-momentum conservation, and then convoluting it with
the momentum-space wave packets of the involved particles. We show that these
two approaches are equivalent. Kinematic entanglement (which is invoked to
ensure exact energy-momentum conservation in neutrino oscillations) and
subsequent disentanglement of the neutrinos and recoiling states are in fact
irrelevant when the wave packets are considered. We demonstrate that the
contribution of the recoil particle to the oscillation phase is negligible
provided that the coherence conditions for neutrino production and detection
are satisfied. Unlike in the previous situation, the phases of both neutrinos
from decay are important, leading to a realization of the
Einstein-Podolsky-Rosen paradox.Comment: 30 pages, 3 eps figures; presentation improved, clarifications added.
To the memory of G.T. Zatsepi
A high-resolution 6.0-megabase transcript map of the type 2 diabetes susceptibility region on human chromosome 20
Recent linkage studies and association analyses indicate the presence of at least one type 2 diabetes susceptibility gene in human chromosome region 20q12-q13.1. We have constructed a high-resolution 6.0-megabase (Mb) transcript map of this interval using two parallel, complementary strategies to construct the map. We assembled a series of bacterial artificial chromosome (BAC) contigs from 56 overlapping BAC clones, using STS/marker screening of 42 genes, 43 ESTs, 38 STSs, 22 polymorphic, and 3 BAC end sequence markers. We performed map assembly with GraphMap, a software program that uses a greedy path searching algorithm, supplemented with local heuristics. We anchored the resulting BAC contigs and oriented them within a yeast artificial chromosome (YAC) scaffold by observing the retention patterns of shared markers in a panel of 21 YAC clones. Concurrently, we assembled a sequence-based map from genomic sequence data released by the Human Genome Project, using a seed-and-walk approach. The map currently provides near-continuous coverage between SGC32867 and WI-17676 (∼ 6.0 Mb). EST database searches and genomic sequence alignments of ESTs, mRNAs, and UniGene clusters enabled the annotation of the sequence interval with experimentally confirmed and putative transcripts. We have begun to systematically evaluate candidate genes and novel ESTs within the transcript map framework. So far, however, we have found no statistically significant evidence of functional allelic variants associated with type 2 diabetes. The combination of the BAC transcript map, YAC-to-BAC scaffold, and reference Human Genome Project sequence provides a powerful integrated resource for future genomic analysis of this region
A stochastic evolutionary model generating a mixture of exponential distributions
Recent interest in human dynamics has stimulated the investigation of the stochastic processes that explain human behaviour in various contexts, such as mobile phone networks and social media.
In this paper, we extend the stochastic urn-based model proposed in \cite{FENN15} so that it can generate mixture models,
in particular, a mixture of exponential distributions.
The model is designed to capture the dynamics of survival analysis, traditionally employed in clinical trials, reliability analysis in engineering, and more recently in the analysis of large data sets recording human dynamics. The mixture modelling approach, which is relatively simple and well understood, is very effective in capturing heterogeneity in data.
We provide empirical evidence for the validity of the model, using a data set of popular search engine queries collected over a period of 114 months. We show that the survival function of these queries is closely matched by the exponential mixture solution for our model
Randomized controlled field trial to assess the immunogenicity and safety of rift valley fever clone 13 vaccine in livestock
BACKGROUND:Although livestock vaccination is effective in preventing Rift Valley fever (RVF) epidemics, there are concerns about safety and effectiveness of the only commercially available RVF Smithburn vaccine. We conducted a randomized controlled field trial to evaluate the immunogenicity and safety of the new RVF Clone 13 vaccine, recently registered in South Africa. METHODS:In a blinded randomized controlled field trial, 404 animals (85 cattle, 168 sheep, and 151 goats) in three farms in Kenya were divided into three groups. Group A included males and non-pregnant females that were randomized and assigned to two groups; one vaccinated with RVF Clone 13 and the other given placebo. Groups B included animals in 1st half of pregnancy, and group C animals in 2nd half of pregnancy, which were also randomized and either vaccinated and given placebo. Animals were monitored for one year and virus antibodies titers assessed on days 14, 28, 56, 183 and 365. RESULTS:In vaccinated goats (N = 72), 72% developed anti-RVF virus IgM antibodies and 97% neutralizing IgG antibodies. In vaccinated sheep (N = 77), 84% developed IgM and 91% neutralizing IgG antibodies. Vaccinated cattle (N = 42) did not develop IgM antibodies but 67% developed neutralizing IgG antibodies. At day 14 post-vaccination, the odds of being seropositive for IgG in the vaccine group was 3.6 (95% CI, 1.5 - 9.2) in cattle, 90.0 (95% CI, 25.1 - 579.2) in goats, and 40.0 (95% CI, 16.5 - 110.5) in sheep. Abortion was observed in one vaccinated goat but histopathologic analysis did not indicate RVF virus infection. There was no evidence of teratogenicity in vaccinated or placebo animals. CONCLUSIONS:The results suggest RVF Clone 13 vaccine is safe to use and has high (>90%) immunogenicity in sheep and goats but moderate (> 65%) immunogenicity in cattle
Meta-analysis of type 2 Diabetes in African Americans Consortium
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR) = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe
New insights into the genetic etiology of Alzheimer's disease and related dementias
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele
Pulmonary Function and Blood DNA Methylation A Multiancestry Epigenome-Wide Association Meta-analysis
Rationale: Methylation integrates factors present at birth and modifiable across the lifespan that can influence pulmonary function. Studies are limited in scope and replication. Objectives: To conduct large-scale epigenome-wide meta-analyses of blood DNA methylation and pulmonary function. Methods: Twelve cohorts analyzed associations of methylation at cytosine-phosphate-guanine probes (CpGs), using Illumina 450K or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We performed multiancestry epigenome-wide meta-analyses (total of 17,503 individuals; 14,761 European, 2,549 African, and 193 Hispanic/Latino ancestries) and interpreted results using integrative epigenomics. Measurements and Main Results: We identified 1,267 CpGs (1,042 genes) differentially methylated (false discovery rate,,0.025) in relation to FEV1, FVC, or FEV1/FVC, including 1,240 novel and 73 also related to chronic obstructive pulmonary disease (1,787 cases). We found 294 CpGs unique to European or African ancestry and 395 CpGs unique to never or ever smokers. The majority of significant CpGs correlated with nearby gene expression in blood. Findings were enriched in key regulatory elements for gene function, including accessible chromatin elements, in both blood and lung. Sixty-nine implicated genes are targets of investigational or approved drugs. One example novel gene highlighted by integrative epigenomic and druggable target analysis is TNFRSF4. Mendelian randomization and colocalization analyses suggest that epigenome-wide association study signals capture causal regulatory genomic loci. Conclusions: We identified numerous novel loci differentially methylated in relation to pulmonary function; few were detected in large genome-wide association studies. Integrative analyses highlight functional relevance and potential therapeutic targets. This comprehensive discovery of potentially modifiable, novel lung function loci expands knowledge gained from genetic studies, providing insights into lung pathogenesis
Recommended from our members
Multi-ancestry genome-wide association analyses improve resolution of genes and pathways influencing lung function and chronic obstructive pulmonary disease risk.
Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies
- …