50 research outputs found
Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev
7191/Mar294
Measurement of jet suppression in central Pb-Pb collisions at root s(NN)=2.76 TeV
The transverse momentum(p(T)) spectrum and nuclear modification factor (R-AA) of reconstructed jets in 0-10% and 10-30% central Pb-Pb collisions at root s(NN) = 2.76 TeV were measured. Jets were reconstructed using the anti-k(T) jet algorithm with a resolution parameter of R = 0.2 from charged and neutral particles, utilizing the ALICE tracking detectors and Electromagnetic Calorimeter (EMCal). The jet p(T) spectra are reported in the pseudorapidity interval of \eta(jet)\ 5 GeV/c to suppress jets constructed from the combinatorial background in Pb-Pb collisions. The leading charged particle requirement applied to jet spectra both in pp and Pb-Pb collisions had a negligible effect on the R-AA. The nuclear modification factor R-AA was found to be 0.28 +/- 0.04 in 0-10% and 0.35 +/- 0.04 in 10-30% collisions, independent of p(T), jet within the uncertainties of the measurement. The observed suppression is in fair agreement with expectations from two model calculations with different approaches to jet quenching. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V.Peer reviewe
J/psi production as a function of charged-particle pseudorapidity density in p-Pb collisions at root s(NN)=5.02 TeV
We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch/dη in p–Pb collisions at sNN=5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity
Centrality dependence of inclusive J/\u3c8 production in p-Pb collisions at 1asNN = 5.02 TeV
We present a measurement of inclusive J/\u3c8 production in p-Pb collisions at 1asNN = 5.02TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. The measurement is performed with the ALICE detector down to zero transverse momentum, pT, in the backward ( 124.46 < ycms < 122.96) and forward (2.03 < ycms < 3.53) rapidity intervals in the dimuon decay channel and in the mid-rapidity region ( 121.37 < ycms < 0.43) in the dielectron decay channel. The backward and forward rapidity intervals correspond to the Pb-going and p-going direction, respectively. The pT-differential J/\u3c8 production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average pT and pT2 values. The nuclear modification factor is presented as a function of centrality for the three rapidity intervals, and as a function of pT for several centrality classes at backward and forward rapidity. At mid- and forward rapidity, the J/\u3c8 yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. The degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing pT of the J/\u3c8. At backward rapidity, the nuclear modification factor is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions
Centrality dependence of high-pT D meson suppression in Pb-Pb collisions at 1asNN = 2.76 TeV
The nuclear modification factor, RAA, of the prompt charmed mesons D0, D+ and D 17+, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass energy 1asNN = 2.76 TeV in two transverse momentum intervals, 5 < pT < 8GeV/c and 8 < pT < 16GeV/c, and in six collision centrality classes. The RAA shows a maximum suppression of a factor of 5\u20136 in the 10% most central collisions. The suppression and its centrality dependence are compatible within uncertainties with those of charged pions. A comparison with the RAA of non-prompt J/\u3c8 from B meson decays, measured by the CMS Collaboration, hints at a larger suppression of D mesons in the most central collisions
經濟學全集「統計學」を讀む
39 pages, 11 captioned figures, 8 tables (5 of them in Appendix A), authors from page 33, submitted to JHEP, figures at http://aliceinfo.cern.ch/ArtSubmission/node/2359 ; see paper for full list of authorsInternational audienceThe measurement of prompt D-meson production as a function of multiplicity in p-Pb collisions at TeV with the ALICE detector at the LHC is reported. D, D and D mesons are reconstructed via their hadronic decay channels in the centre-of-mass rapidity range and transverse momentum interval GeV/. The multiplicity dependence of D-meson production is examined by either comparing yields in p-Pb collisions in different event classes, selected based on the multiplicity of produced particles or zero-degree energy, with those in pp collisions, scaled by the number of binary nucleon-nucleon collisions (nuclear modification factor); as well as by evaluating the per-event yields in p-Pb collisions in different multiplicity intervals normalised to the multiplicity-integrated ones (relative yields). The nuclear modification factors for D, D and D are consistent with one another. The D-meson nuclear modification factors as a function of the zero-degree energy are consistent with unity within uncertainties in the measured regions and event classes. The relative D-meson yields, calculated in various intervals, increase as a function of the charged-particle multiplicity. The results are compared with the equivalent pp measurements at TeV as well as with EPOS~3 calculations
Controllable coupling and quantum correlation dynamics of two double quantum dots coupled via a transmission line resonator
We propose a theoretical scheme to generate a controllable and switchable coupling
between two double-quantum-dot (DQD) spin qubits by using a transmission line resonator
(TLR) as a bus system. We study dynamical behaviors of quantum correlations described by
entanglement correlation (EC) and discord correlation (DC) between two DQD spin qubits
when the two spin qubits and the TLR are initially prepared in X-type
quantum states and a coherent state, respectively. We demonstrate that in the EC death
regions there exist DC stationary states in which the stable DC amplification or
degradation can be generated during the dynamical evolution. It is shown that these DC
stationary states can be controlled by initial-state parameters, the coupling, and
detuning between qubits and the TLR. We reveal the full synchronization and
anti-synchronization phenomena in the EC and DC time evolution, and show that the EC and
DC synchronization and anti-synchronization depends on the initial-state parameters of the
two DQD spin qubits. It is shown that the initial quantum correlation may be suppressed
completely when the evolution time approaches to the infinity in the presence of
dissipation. These results shed new light on dynamics of quantum correlations
Dynamic spin-polarized shot noise in a quantum dot coupled to ferromagnetic terminals under the perturbation of ac fields
We have investigated the shot noise in the mesoscopic system composed of a quantum dot (QD) coupled to ferromagnetic terminals under the perturbation of ac fields. The shot noise has been derived using the nonequilibrium Green's function (NGF) technique to describe the spin polarization effect along with photon absorption and emission processes in the Coulomb blockade regime. We have examined the influence of spin polarization on the shot noise under the perturbation of ac fields in the nonadiabatic regime. The Coulomb blockade effect results in the modification of shot noise compared with the noninteracting case. The spin orientation contributes a spin valve effect for controlling electron tunnelling through this QD, and different resonant forms appear around the Coulomb blockade channel. The photon-assisted spin-splitting and spin-polarization effect contributes a photon-assisted spin valve to adjust the electron tunnelling current and shot noise. The spin-polarization effect varies the value of the Fano factor. However, it does not change the noise type from sub-Poissonian to super-Poissonian. Copyright EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010
Erratum to: Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at s = 7 TeV (The European Physical Journal C, (2017), 77, 8, (569), 10.1140/epjc/s10052-017-5129-6)
We have identified a mistake in how Fig. 1 is referenced in the text of the article Eur. Phys. J. C 77 (2017) no. 8, 569 which affected three paragraphs of the results section. The corrected three paragraphs as well as the unmodified accompanying figure are reproduced in this document with the correct labeling. In addition, an editing issue led to a missing acknowledgements section. The missing section is reproduced at the end of this document in the manner in which it should have appeared in the published article. © 2019, CERN for the benefit of the ALICE collaboration