1,236 research outputs found
Direct Mott Insulator-to-Superfluid Transition in the Presence of Disorder
We introduce a new renormalization group theory to examine the quantum phase
transitions upon exiting the insulating phase of a disordered, strongly
interacting boson system. For weak disorder we find a direct transition from
this Mott insulator to the Superfluid phase. In d > 4 a finite region around
the particle-hole symmetric point supports this direct transition, whereas for
2=< d <4 perturbative arguments suggest that the direct transition survives
only precisely at commensurate filling. For strong disorder the renormalization
trajectories pass next to two fixed points, describing a pair of distinct
transitions; first from the Mott insulator to the Bose glass, and then from the
Bose glass to the Superfluid. The latter fixed point possesses statistical
particle-hole symmetry and a dynamical exponent z, equal to the dimension d.Comment: 4 pages, Latex, submitted to Physical Review Letter
Galaxy rotation curves: the effect of j x B force
Using the Galaxy as an example, we study the effect of j x B force on the
rotational curves of gas and plasma in galaxies. Acceptable model for the
galactic magnetic field and plausible physical parameters are used to fit the
flat rotational curve for gas and plasma based on the observed baryonic
(visible) matter distribution and j x B force term in the static MHD equation
of motion. We also study the effects of varied strength of the magnetic field,
its pitch angle and length scale on the rotational curves. We show that j x B
force does not play an important role on the plasma dynamics in the
intermediate range of distances 6-12 kpc from the centre, whilst the effect is
sizable for larger r (r > 15 kpc), where it is the most crucial.Comment: Accepted for publication in Astrophysics & Space Science (final
printed version, typos in proofs corrected
Critical points in edge tunneling between generic FQH states
A general description of weak and strong tunneling fixed points is developed
in the chiral-Luttinger-liquid model of quantum Hall edge states. Tunneling
fixed points are a subset of `termination' fixed points, which describe
boundary conditions on a multicomponent edge. The requirement of unitary time
evolution at the boundary gives a nontrivial consistency condition for possible
low-energy boundary conditions. The effect of interactions and random hopping
on fixed points is studied through a perturbative RG approach which generalizes
the Giamarchi-Schulz RG for disordered Luttinger liquids to broken left-right
symmetry and multiple modes. The allowed termination points of a multicomponent
edge are classified by a B-matrix with rational matrix elements. We apply our
approach to a number of examples, such as tunneling between a quantum Hall edge
and a superconductor and tunneling between two quantum Hall edges in the
presence of interactions. Interactions are shown to induce a continuous
renormalization of effective tunneling charge for the integrable case of
tunneling between two Laughlin states. The correlation functions of
electronlike operators across a junction are found from the B matrix using a
simple image-charge description, along with the induced lattice of boundary
operators. Many of the results obtained are also relevant to ordinary Luttinger
liquids.Comment: 23 pages, 6 figures. Xiao-Gang Wen: http://dao.mit.edu/~we
Anion exchange membrane soil nitrate predicts turfgrass color and yield.
Desirable nitrogen (N) management practices for turfgrass supply sufficient N for high quality turf while limiting excess soil N. Previous studies suggested the potential of anion exchange membranes (AEMs) for predicting turfgrass color, quality, or yield. However, these studies suggested a wide range of critical soil nitrate-nitrogen (NO3-N) values across sample dates. A field experiment, in randomized complete block design with treatments consisting of nine N application rates, was conducted on a mixed species cool-season turfgrass lawn across two growing seasons. Every 2 wk from May to October, turfgrass color was assessed with three different reflectance meters, and soil NO3-N was measured with in situ AEMs. Cate-Nelson models were developed comparing relative reflectance value and yield to AEM desorbed soil NO3-N pooled across all sample dates. These models predicted critical AEM soil NO3-N values from 0. 45 to 1.4 micro g cm-2 d-1. Turf had a low probability of further positive response to AEM soil NO3-N greater than these critical values. These results suggest that soil NO3-N critical values from AEMs may be applicable across sample dates and years and may serve to guide N fertilization to limit excess soil NO3-N
A multistate model of health transitions in older people: a secondary analysis of ASPREE clinical trial data
Background: Understanding the nature of transitions from a healthy state to chronic diseases and death is important for planning health-care system requirements and interventions. We aimed to quantify the trajectories of disease and disability in a population of healthy older people. Methods: We conducted a secondary analysis of data from the ASPREE trial, which was done in 50 sites in Australia and the USA and recruited community-dwelling, healthy individuals who were aged 70 years or older (≥65 years for Black and Hispanic people in the USA) between March 10, 2010, and Dec 24, 2014. Participants were followed up with annual face-to-face visits, biennial assessments of cognitive function, and biannual visits for physical function until death or June 12, 2017, whichever occurred first. We used multistate models to examine transitions from a healthy state to first intermediate disease events (ie, cancer events, stroke events, cardiac events, and physical disability or dementia) and, ultimately, to death. We also examined the effects of age and sex on transition rates using Cox proportional hazards regression models. Findings: 19 114 participants with a median age of 74·0 years (IQR 71·6–77·7) were included in our analyses. During a median follow-up of 4·7 years (IQR 3·6–5·7), 1933 (10·1%) of 19 114 participants had an incident cancer event, 487 (2·5%) had an incident cardiac event, 398 (2·1%) had an incident stroke event, 924 (4·8%) developed persistent physical disability or dementia, and 1052 (5·5%) died. 15 398 (80·6%) individuals did not have any of these events during follow-up. The highest proportion of deaths followed incident cancer (501 [47·6%] of 1052) and 129 (12·3%) participants transitioned from disability or dementia to death. Among 12 postulated transitions, transitions from the intermediate states to death had much higher rates than transitions from a healthy state to death. The progression rates to death were 158 events per 1000 person-years (95% CI 144–172) from cancer, 112 events per 1000 person-years (86–145) from stroke, 88 events per 1000 person-years (68–111) from cardiac disease, 69 events per 1000 person-years (58–82) from disability or dementia, and four events per 1000 person-years (4–5) from a healthy state. Age was significantly associated with an accelerated rate for most transitions. Male sex (vs female sex) was significantly associated with an accelerate rate for five of 12 transitions. Interpretation: We describe a multistate model in a healthy older population in whom the most common transition was from a healthy state to cancer. Our findings provide unique insights into the frequency of events, their transition rates, and the impact of age and sex. These results have implications for preventive health interventions and planning for appropriate levels of residential care in healthy ageing populations. Funding: The National Institutes of Health
Crossover and scaling in a nearly antiferromagnetic Fermi liquid in two dimensions
We consider two-dimensional Fermi liquids in the vicinity of a quantum
transition to a phase with commensurate, antiferromagnetic long-range order.
Depending upon the Fermi surface topology, mean-field spin-density-wave theory
predicts two different types of such transitions, with mean-field dynamic
critical exponents (when the Fermi surface does not cross the magnetic
zone boundary, type ) and (when the Fermi surface crosses the magnetic
zone boundary, type ). The type system only displays behavior at
all energies and its scaling properties are similar (though not identical) to
those of an insulating Heisenberg antiferromagnet. Under suitable conditions
precisely stated in this paper, the type system displays a crossover from
relaxational behavior at low energies to type behavior at high energies. A
scaling hypothesis is proposed to describe this crossover: we postulate a
universal scaling function which determines the entire, temperature-,
wavevector-, and frequency-dependent, dynamic, staggered spin susceptibility in
terms of 4 measurable, , parameters (determining the distance, energy, and
order parameter scales, plus one crossover parameter). The scaling function
contains the full scaling behavior in all regimes for both type and
systems. The crossover behavior of the uniform susceptibility and the specific
heat is somewhat more complicated and is also discussed. Explicit computation
of the crossover functions is carried out in a large expansion on a
mean-field model. Some new results for the critical properties on the ordered
side of the transition are also obtained in a spin-density wave formalism. The
possible relevance of our results to the doped cuprate compounds is briefly
discussed.Comment: 20 pages, REVTeX, 6 figures (uuencoded compressed PostScript file for
figures is appended
Digital Quantum Simulation with Rydberg Atoms
We discuss in detail the implementation of an open-system quantum simulator
with Rydberg states of neutral atoms held in an optical lattice. Our scheme
allows one to realize both coherent as well as dissipative dynamics of complex
spin models involving many-body interactions and constraints. The central
building block of the simulation scheme is constituted by a mesoscopic Rydberg
gate that permits the entanglement of several atoms in an efficient, robust and
quick protocol. In addition, optical pumping on ancillary atoms provides the
dissipative ingredient for engineering the coupling between the system and a
tailored environment. As an illustration, we discuss how the simulator enables
the simulation of coherent evolution of quantum spin models such as the
two-dimensional Heisenberg model and Kitaev's toric code, which involves
four-body spin interactions. We moreover show that in principle also the
simulation of lattice fermions can be achieved. As an example for controlled
dissipative dynamics, we discuss ground state cooling of frustration-free spin
Hamiltonians.Comment: submitted to special issue "Quantum Information with Neutral
Particles" of "Quantum Information Processing
- …