1,287 research outputs found

    Baffin Island Fjord Macrobenthos: Bottom Communities and Environmental Significance

    Get PDF
    Cluster analysis of the benthos from ten Baffin Island fjords defines six faunal associations. The macrotidal Sunneshine Fiord has a shallow kelp-related Isopod Association. Cambridge Fiord supports a shallow Onuphid Association controlled by gravel from dropstones. A widespread Portlandia Association typified the shallow zones of more recently glaciated fjords where sedimentation rates are high. An Ophiuroid-Anemone Association was defined from current-affected submarine channel environments. A Maldanid Association covered the greatest area in all fjords and passed into an Elasipod Association in the deepest water in Cambridge Fiord. Fjord-head faunas are used to model ecological changes accompanying glacier retreat, from monospecific Portlandia, through mature Portlandia Association to Onuphid Association accompanied by diverse filter feeders and herbivores. Chlamys islandica was found living in Cambridge Fiord, which substantially increases its northern limit.Key words: macrobenthos, Arctic, cluster analysis, bivalve, Quaternary, sedimentMots clés: macrobenthos, Arctique, analyse d’ensemble, bivalve, quaternaire, sédiment

    A Farewell to Liouvillians

    Full text link
    We examine the Liouvillian approach to the quantum Hall plateau transition, as introduced recently by Sinova, Meden, and Girvin [Phys. Rev. B {\bf 62}, 2008 (2000)] and developed by Moore, Sinova and Zee [Phys. Rev. Lett. {\bf 87}, 046801 (2001)]. We show that, despite appearances to the contrary, the Liouvillian approach is not specific to the quantum mechanics of particles moving in a single Landau level: we formulate it for a general disordered single-particle Hamiltonian. We next examine the relationship between Liouvillian perturbation theory and conventional calculations of disorder-averaged products of Green functions and show that each term in Liouvillian perturbation theory corresponds to a specific contribution to the two-particle Green function. As a consequence, any Liouvillian approximation scheme may be re-expressed in the language of Green functions. We illustrate these ideas by applying Liouvillian methods, including their extension to NL>1N_L > 1 Liouvillian flavors, to random matrix ensembles, using numerical calculations for small integer NLN_L and an analytic analysis for large NLN_L. We find that behavior at NL>1N_L > 1 is different in qualitative ways from that at NL=1N_L=1. In particular, the NL=N_L = \infty limit expressed using Green functions generates a pathological approximation, in which two-particle correlation functions fail to factorize correctly at large separations of their energy, and exhibit spurious singularities inside the band of random matrix energy levels. We also consider the large NLN_L treatment of the quantum Hall plateau transition, showing that the same undesirable features are present there, too

    Vacuum effects in a vibrating cavity: time refraction, dynamical Casimir effect, and effective Unruh acceleration

    Full text link
    Two different quantum processes are considered in a perturbed vacuum cavity: time refraction and dynamical Casimir effect. They are shown to be physically equivalent, and are predicted to be unstable, leading to an exponential growth in the number of photons created in the cavity. The concept of an effective Unruh acceleration for these processes is also introduced, in order to make a comparison in terms of radiation efficiency, with the Unruh radiation associated with an accelerated frame in unbounded vacuum.Comment: 5 pages, version to appear in Physics Letters

    Critical points in edge tunneling between generic FQH states

    Full text link
    A general description of weak and strong tunneling fixed points is developed in the chiral-Luttinger-liquid model of quantum Hall edge states. Tunneling fixed points are a subset of `termination' fixed points, which describe boundary conditions on a multicomponent edge. The requirement of unitary time evolution at the boundary gives a nontrivial consistency condition for possible low-energy boundary conditions. The effect of interactions and random hopping on fixed points is studied through a perturbative RG approach which generalizes the Giamarchi-Schulz RG for disordered Luttinger liquids to broken left-right symmetry and multiple modes. The allowed termination points of a multicomponent edge are classified by a B-matrix with rational matrix elements. We apply our approach to a number of examples, such as tunneling between a quantum Hall edge and a superconductor and tunneling between two quantum Hall edges in the presence of interactions. Interactions are shown to induce a continuous renormalization of effective tunneling charge for the integrable case of tunneling between two Laughlin states. The correlation functions of electronlike operators across a junction are found from the B matrix using a simple image-charge description, along with the induced lattice of boundary operators. Many of the results obtained are also relevant to ordinary Luttinger liquids.Comment: 23 pages, 6 figures. Xiao-Gang Wen: http://dao.mit.edu/~we

    Hydrodynamics of thermal granular convection

    Full text link
    A hydrodynamic theory is formulated for buoyancy-driven ("thermal") granular convection, recently predicted in molecular dynamic simulations and observed in experiment. The limit of a dilute flow is considered. The problem is fully described by three scaled parameters. The convection occurs via a supercritical bifurcation, the inelasticity of the collisions being the control parameter. The theory is expected to be valid for small Knudsen numbers and nearly elastic grain collisions.Comment: 4 pages, 4 EPS figures, some details adde

    Beam instrumentation for the Tevatron Collider

    Full text link
    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders

    Geometric effects on T-breaking in p+ip and d+id superconductors

    Full text link
    Superconducting order parameters that change phase around the Fermi surface modify Josephson tunneling behavior, as in the phase-sensitive measurements that confirmed dd order in the cuprates. This paper studies Josephson coupling when the individual grains break time-reversal symmetry; the specific cases considered are p±ipp \pm ip and d±idd \pm id, which may appear in Sr2_2RuO4_4 and Nax_xCoO2_2 \cdot (H2_2O)y_y respectively. TT-breaking order parameters lead to frustrating phases when not all grains have the same sign of time-reversal symmetry breaking, and the effects of these frustrating phases depend sensitively on geometry for 2D arrays of coupled grains. These systems can show perfect superconducting order with or without macroscopic TT-breaking. The honeycomb lattice of superconducting grains has a superconducting phase with no spontaneous breaking of TT but instead power-law correlations. The superconducting transition in this case is driven by binding of fractional vortices, and the zero-temperature criticality realizes a generalization of Baxter's three-color model.Comment: 8 page

    Edge Dynamics in Quantum Hall Bilayers II: Exact Results with Disorder and Parallel Fields

    Full text link
    We study edge dynamics in the presence of interlayer tunneling, parallel magnetic field, and various types of disorder for two infinite sequences of quantum Hall states in symmetric bilayers. These sequences begin with the 110 and 331 Halperin states and include their fractional descendants at lower filling factors; the former is easily realized experimentally while the latter is a candidate for the experimentally observed quantum Hall state at a total filling factor of 1/2 in bilayers. We discuss the experimentally interesting observables that involve just one chiral edge of the sample and the correlation functions needed for computing them. We present several methods for obtaining exact results in the presence of interactions and disorder which rely on the chiral character of the system. Of particular interest are our results on the 331 state which suggest that a time-resolved measurement at the edge can be used to discriminate between the 331 and Pfaffian scenarios for the observed quantum Hall state at filling factor 1/2 in realistic double-layer systems.Comment: revtex+epsf; two-up postscript at http://www.sns.ias.edu/~leonid/ntwoup.p
    corecore