4,226 research outputs found
Ambient Isotopic Meshing of Implicit Algebraic Surface with Singularities
A complete method is proposed to compute a certified, or ambient isotopic,
meshing for an implicit algebraic surface with singularities. By certified, we
mean a meshing with correct topology and any given geometric precision. We
propose a symbolic-numeric method to compute a certified meshing for the
surface inside a box containing singularities and use a modified
Plantinga-Vegter marching cube method to compute a certified meshing for the
surface inside a box without singularities. Nontrivial examples are given to
show the effectiveness of the algorithm. To our knowledge, this is the first
method to compute a certified meshing for surfaces with singularities.Comment: 34 pages, 17 Postscript figure
Investigation on the Impact of Degree of Hybridisation for a Fuel Cell Supercapacitor Hybrid Bus with a Fuel Cell Variation Strategy
This paper presents the development of a control strategy for a fuel cell and supercapacitor hybrid power system for application in a city driving bus. This aims to utilise a stable fuel cell power output during normal operation whilst allowing variations to the power output based on the supercapacitor state-of-charge. This provides flexibility to the operation of the system, protection against over-charge and under-charge of the supercapacitor and gives flexibility to the sizing of the system components. The proposed control strategy has been evaluated using validated Simulink models against real-world operating data collected from a double-decker bus operating in London. It was demonstrated that the control strategy was capable of meeting the operating power demands of the bus and that a wide range of degrees of hybridisation are viable for achieving this. Comparison between the degree of hybridisation proposed in this study and those in operational fuel cell (FC) hybrid buses was carried out. It was found that the FC size requirement and FC variation can be significantly reduced through the use of the degree of hybridisation identified in this study
Chalcogenide microsphere fabricated from fibre taper-drawn using resistive heating
Over the last decade extreme interest for microsphere resonators has increased rapidly due to their very high quality Q factors, the ease with which they can be manufactured and their versatility in terms of materials and dopants for plenty of passive and active devices. Furthermore, microsphere resonators have the potential to add significant functionality to planar lightwave circuits when coupled to waveguides where they can provide wavelength filtering, delay and low-power switching, and laser functions [1].Recently, chalcogenides are rapidly establishing themselves technologically superior materials for emerging application in non-volatile memory and high speed switching [2] and have been considered for a range of other optoelectronic technologies. Chalcogenide glasses offer a wide wealth of active properties, an exceptionally high nonlinearity, photosensitivity, the ability to be doped with active elements including lanthanides and transitional metals and are able to form detectors, lasers and amplifiers and offer semiconductor, optical, acousto-optic, superconducting and opto-mechanical properties. Unlike any other optical material, they have been formed in to a multitude of form: such as optical fibres, thin films, bulk optical components, microsphere resonators, metamaterials and nanoparticles, patterned by CMOS compatible processing at the sub micron scale. To date, most studies on microsphere resonators have utilized silica microspheres fabricated by melting the tip of an optical fibre with the resulting stem attached to the microsphere used as a tool to place the sphere in the required location while characterizing the microsphere. In this paper high quality chalcogenide (As2S3) microspheres with diameters down to 74 µm are directly fabricated from the taper-drawn using a resistive heating process. A reasonable high quality factor greater than 105 near the wavelength of 1550 nm is demonstrated with an efficient coupling using a fibre taper with a diameter of 2 µm
DFM synthesis approach based on product-process interface modelling. Application to the peen forming process.
Engineering design approach are curently CAD-centred design process. Manufacturing information is selected and assessed very late in the design process and above all as a reactive task instead of being proactive to lead the design choices. DFM appraoches are therefore assesment methods that compare several design alternatives and not real design approaches at all. Main added value of this research work concerns the use of a product-process interface model to jointly manage both the product and the manufacturing data in a proactive DFM way. The DFM synthesis approach and the interface model are presented via the description of the DFM software platform
CYLD: A DUB with Many Talents
The deubiquitinating enzyme CYLD is a tumor suppressor protein known for its role in repression of generally pro-oncogenic NF-κB activation pathways. Two new studies published in this and the September issue of Developmental Cell show that CYLD dismantles distinct types of polyubiquitin chains formed on select signaling proteins and is thereby required for normal vertebrate and invertebrate development
Sensing with magnetic dipolar resonances in semiconductor nanospheres
In this work we propose two novel sensing principles of detection that exploit the magnetic dipolar Mie resonance in high-refractiveindex dielectric nanospheres. In particular, we theoretically investigate the spectral evolution of the extinction and scattering cross sections of these nanospheres as a function of the refractive index of the external medium (next). Unlike resonances in plasmonic nanospheres, the spectral position of magnetic resonances in high-refractive-index nanospheres barely shifts as next changes. Nevertheless, there is a drastic reduction in the extinction cross section of the nanospheres when next increases, especially in the magnetic dipolar spectral region, which is accompanied with remarkable variations in the radiation patterns. Thanks to these changes, we propose two new sensing parameters, which are based on the detection of: i) the intensity variations in the transmitted or backscattered radiation by the dielectric nanospheres at the magnetic dipole resonant frequency, and ii) the changes in the radiation pattern at the frequency that satisfies Kerker's condition of near-zero forward radiation. To optimize the sensitivity, we consider several semiconductor materials and particles sizes. © 2013 Optical Society of America.B.G.-C. acknowledges support from the JAE-Doc program of the Spanish Council of Research (CSIC). This research has been funded by Ministerio de Ciencia e Innovación, through grants: Consolider NanoLight (CSD2007-00046), FIS2009-13430-C02, as well as by the Comunidad de Madrid (Microseres-CM, S2009/TIC-1476).Peer Reviewe
Photonuclear reactions of actinides in the giant dipole resonance region
Photonuclear reactions at energies covering the giant dipole resonance (GDR)
region are analyzed with an approach based on nuclear photoabsorption followed
by the process of competition between light particle evaporation and fission
for the excited nucleus. The photoabsorption cross section at energies covering
the GDR region is contributed by both the Lorentz type GDR cross section and
the quasideuteron cross section. The evaporation-fission process of the
compound nucleus is simulated in a Monte-Carlo framework. Photofission reaction
cross sections are analyzed in a systematic manner in the energy range of
10-20 MeV for the actinides Th, U and Np.
Photonuclear cross sections for the medium-mass nuclei Cu and Zn,
for which there are no fission events, are also presented. The study reproduces
satisfactorily the available experimental data of photofission cross sections
at GDR energy region and the increasing trend of nuclear fissility with the
fissility parameter for the actinides.Comment: 4 pages including 2 tables and 1 figur
Acute inhibition of MEK suppresses congenital melanocytic nevus syndrome in a murine model driven by activated NRAS and Wnt signaling
Congenital melanocytic nevus (CMN) syndrome is the association of pigmented melanocytic nevi with extra-cutaneous features, classically melanotic cells within the central nervous system, most frequently caused by a mutation of NRAS codon 61. This condition is currently untreatable and carries a significant risk of melanoma within the skin, brain, or leptomeninges. We have previously proposed a key role for Wnt signaling in the formation of melanocytic nevi, suggesting that activated Wnt signaling may be synergistic with activated NRAS in the pathogenesis of CMN syndrome. Some familial pre-disposition suggests a germ-line contribution to CMN syndrome, as does variability of neurological phenotypes in individuals with similar cutaneous phenotypes. Accordingly, we performed exome sequencing of germ-line DNA from patients with CMN to reveal rare or undescribed Wnt-signaling alterations. A murine model harboring activated NRASQ61K and Wnt signaling in melanocytes exhibited striking features of CMN syndrome, in particular neurological involvement. In the first model of treatment for this condition, these congenital, and previously assumed permanent, features were profoundly suppressed by acute post-natal treatment with a MEK inhibitor. These data suggest that activated NRAS and aberrant Wnt signaling conspire to drive CMN syndrome. Post-natal MEK inhibition is a potential candidate therapy for patients with this debilitating condition
Process mapping of laser surface modification of AISI 316L stainless steel for biomedical applications
A 1.5-kW CO2 laser in pulsed mode at 3 kHz was used to investigate the effects of varied laser process parameters and resulting morphology of AISI 316L stainless steel. Irradiance and residence time were varied between 7.9 to 23.6 MW/cm2 and 50 to 167 µs respectively. A strong correlation between irradiance, residence time, depth of processing and roughness of processed steel was established. The high depth of altered microstructure and increased roughness were linked to higher levels of both irradiance and residence times. Energy fluence and surface temperature models were used to predict levels of melting occurring on the surface through the analysis of roughness and depth of the region processed. Microstructural images captured by the SEM revealed significant grain structure changes at higher irradiances, but due to increased residence times, limited to the laser in use, the hardness values were not improved
Water vapor deposition from the inner gas coma onto the nucleus of Comet 67P/Churyumov-Gerasimenko
Rosetta has detected water ice existing on the surface of Comet 67P/Churyumov-Gerasimenko in various types of features. One of particular interest is the frost-like layer observed at the edge of receding shadows during the whole mission, interpreted as the recondensation of a thin layer of water ice. Two possible mechanisms, (1) subsurface ice sublimation and (2) gas coma deposition, have been proposed for producing this recondensation process and diurnal cycles of water ice. Previous studies have demonstrated both mechanisms based on simplified models. More precise and modern models are yet insufficient when addressing the gas-coma-deposition mechanism. We aim to study the recondensation from the inner water gas coma of the 67P/Churyumov-Gerasimenko with more physical constraints including the OSIRIS images, nucleus shape model, and insolation conditions. We compute, for the first time, the backflux distributions from the coma with various boundary conditions. Numerical simulations of this gas-coma-deposition process show that the equivalent water ice deposition can be up to several microns in an hour of accumulation time close to the perihelion passage, which is comparable with the simulation results of the other subsurface-ice sublimation mechanism
- …