1,345 research outputs found

    Application of response surface methodology to laser-induced breakdown spectroscopy : influences of hardware configuration

    Get PDF
    Response Surface Methodology (RSM) was employed to optimise LIBS analysis of single crystal silicon at atmospheric pressure and under vacuum conditions (pressure ~10-6mbar). Multivariate analysis software (StatGraphics 5.1) was used to design and analyse several multi-level, full factorial RSM experiments. A Quality Factor (QF) was conceived as the response parameter for the experiments, representing the quality of the LIBS spectrum captured for a given hardware configuration. The QF enabled the hardware configuration to be adjusted so that a best compromise between resolution, signal intensity and signal noise could be achieved. The effect on the QF of simultaneously adjusting spectrometer gain, gate delay, gate width, lens position and spectrometer slit width was investigated, and the conditions yielding the best QF determined

    State-independent quantum violation of noncontextuality in four dimensional space using five observables and two settings

    Full text link
    Recently, a striking experimental demonstration [G. Kirchmair \emph{et al.}, Nature, \textbf{460}, 494(2009)] of the state-independent quantum mechanical violation of non-contextual realist models has been reported for any two-qubit state using suitable choices of \emph{nine} product observables and \emph{six} different measurement setups. In this report, a considerable simplification of such a demonstration is achieved by formulating a scheme that requires only \emph{five} product observables and \emph{two} different measurement setups. It is also pointed out that the relevant empirical data already available in the experiment by Kirchmair \emph{et al.} corroborate the violation of the NCR models in accordance with our proof

    A global near-real-time soil moisture index monitor for food security using integrated SMOS and SMAP

    Get PDF
    Soil Moisture (SM) is a direct measure of agricultural drought. While there are several global SM indices, none of them directly use SM observations in a near-real-time capacity and as an operational tool. This paper presents a near-real-time global SM index monitor based on integrated SMAP (Soil Moisture Active Passive) and SMOS (Soil Moisture and Ocean Salinity) remote sensing data. We make use of the short period (2015–2018) of SMAP datasets in combination with two approaches—Cumulative Distribution Function Mapping (CDFM) and Bayesian conditional process—and integrate them with SMOS data in a way that SMOS data is consistent with SMAP. The integrated SMOS and SMAP (SMOS/SMAP) has an increased global revisit frequency and a period of record from 2010 to the present. A four-parameter Beta distribution was fitted to the SMOS/SMAP dataset for each calendar month of each grid cell at ~36 km resolution for the period from 2010 to 2018. We used an asymptotic method that guarantees the values of the bounding parameters of the Beta distribution will envelop both the smallest and largest observed values. The Kolmogorov-Smirnov (KS) test showed that more grids globally will pass if the integrated dataset is from the Bayesian conditional approach. A daily global SM index map is generated and posted online based on translating each grid's integrated SM value for that day to a corresponding probability percentile relevant to the particular calendar month from 2010 to 2018. For validation, we use the Canadian Prairies Ecozone (CPE). We compare the integrated SM with the SMAP core validation and RISMA sites from ISMN, compare our indices with other models (VIC, ESA's CCI SM v04.4 integrated satellite data, and SPI-1), and make a two-by-two comparison of candidate indices using heat maps and summary CDF statistics. Furthermore, we visually compare our global SM-based index maps with those produced by other organizations. Our Global SM Index Monitor (GSMIM) performed, in many tests, similarly to the CCI's product SM index but with the advantage of being a near-real-time tool, which has applications for identifying evolving drought for food security conditions, insurance, policymaking, and crop planning especially for the remote parts of the globe

    Greenberger-Horne-Zeilinger nonlocality for continuous variable systems

    Full text link
    As a development of our previous work, this paper is concerned with the Greenberger-Horne-Zeilinger (GHZ) nonlocality for continuous variable cases. The discussion is based on the introduction of a pseudospin operator, which has the same algebra as the Pauli operator, for each of the NN modes of a light field. Then the Bell-CHSH (Clauser, Horne, Shimony and Holt) inequality is presented for the NN modes, each of which has a continuous degree of freedom. Following Mermin's argument, it is demonstrated that for NN-mode parity-entangled GHZ states (in an infinite-dimensional Hilbert space) of the light field, the contradictions between quantum mechanics and local realism grow exponentially with NN, similarly to the usual NN-spin cases.Comment: RevTEX; comments are welcomed; new version with minor change

    Practical measurement of joint weak values and their connection to the annihilation operator

    Full text link
    Weak measurements are a new tool for characterizing post-selected quantum systems during their evolution. Weak measurement was originally formulated in terms of von Neumann interactions which are practically available for only the simplest single-particle observables. In the present work, we extend and greatly simplify a recent, experimentally feasible, reformulation of weak measurement for multiparticle observables [Resch and Steinberg (2004, Phys. Rev. Lett., 92, 130402)]. We also show that the resulting ``joint weak values'' take on a particularly elegant form when expressed in terms of annihilation operators.Comment: 13 pages, accepted to Physics Letters A (Dec. 2004

    Two qubits of a W state violate Bell's inequality beyond Cirel'son's bound

    Full text link
    It is shown that the correlations between two qubits selected from a trio prepared in a W state violate the Clauser-Horne-Shimony-Holt inequality more than the correlations between two qubits in any quantum state. Such a violation beyond Cirel'son's bound is smaller than the one achieved by two qubits selected from a trio in a Greenberger-Horne-Zeilinger state [A. Cabello, Phys. Rev. Lett. 88, 060403 (2002)]. However, it has the advantage that all local observers can know from their own measurements whether their qubits belongs or not to the selected pair.Comment: REVTeX4, 5 page

    A Hybrid Artificial Bee Colony Algorithm for Graph 3-Coloring

    Full text link
    The Artificial Bee Colony (ABC) is the name of an optimization algorithm that was inspired by the intelligent behavior of a honey bee swarm. It is widely recognized as a quick, reliable, and efficient methods for solving optimization problems. This paper proposes a hybrid ABC (HABC) algorithm for graph 3-coloring, which is a well-known discrete optimization problem. The results of HABC are compared with results of the well-known graph coloring algorithms of today, i.e. the Tabucol and Hybrid Evolutionary algorithm (HEA) and results of the traditional evolutionary algorithm with SAW method (EA-SAW). Extensive experimentations has shown that the HABC matched the competitive results of the best graph coloring algorithms, and did better than the traditional heuristics EA-SAW when solving equi-partite, flat, and random generated medium-sized graphs

    Quantum mechanical effect of path-polarization contextuality for a single photon

    Full text link
    Using measurements pertaining to a suitable Mach-Zehnder(MZ) type setup, a curious quantum mechanical effect of contextuality between the path and the polarization degrees of freedom of a polarized photon is demonstrated, without using any notion of realism or hidden variables - an effect that holds good for the product as well as the entangled states. This form of experimental context-dependence is manifested in a way such that at \emph{either} of the two exit channels of the MZ setup used, the empirically verifiable \emph{subensemble} statistical properties obtained by an arbitrary polarization measurement depend upon the choice of a commuting(comeasurable) path observable, while this effect disappears for the \emph{whole ensemble} of photons emerging from the two exit channels of the MZ setup.Comment: To be published in IJT

    Output state in multiple entanglement swapping

    Full text link
    The technique of quantum repeaters is a promising candidate for sending quantum states over long distances through a lossy channel. The usual discussions of this technique deals with only a finite dimensional Hilbert space. However the qubits with which one implements this procedure will "ride" on continuous degrees of freedom of the carrier particles. Here we analyze the action of quantum repeaters using a model based on pulsed parametric down conversion entanglement swapping. Our model contains some basic traits of a real experiment. We show that the state created, after the use of any number of parametric down converters in a series of entanglement swappings, is always an entangled (actually distillable) state, although of a different form than the one that is usually assumed. Furthermore, the output state always violates a Bell inequality.Comment: 11 pages, 6 figures, RevTeX
    • …
    corecore