27 research outputs found
Velocity Fluctuations in Electrostatically Driven Granular Media
We study experimentally the particle velocity fluctuations in an
electrostatically driven dilute granular gas. The experimentally obtained
velocity distribution functions have strong deviations from Maxwellian form in
a wide range of parameters. We have found that the tails of the distribution
functions are consistent with a stretched exponential law with typical
exponents of the order 3/2. Molecular dynamic simulations shows qualitative
agreement with experimental data. Our results suggest that this non-Gaussian
behavior is typical for most inelastic gases with both short and long range
interactions.Comment: 4 pages, 4 figure
Velocity correlations in dense granular gases
We report the statistical properties of spherical steel particles rolling on
an inclined surface being driven by an oscillating wall. Strong dissipation
occurs due to collisions between the particles and rolling and can be tuned by
changing the number density. The velocities of the particles are observed to be
correlated over large distances comparable to the system size. The distribution
of velocities deviates strongly from a Gaussian. The degree of the deviation,
as measured by the kurtosis of the distribution, is observed to be as much as
four times the value corresponding to a Gaussian, signaling a significant
breakdown of the assumption of negligible velocity correlations in a granular
system.Comment: 4 pages, 4 Figure
Model of coarsening and vortex formation in vibrated granular rods
Neicu and Kudrolli observed experimentally spontaneous formation of the
long-range orientational order and large-scale vortices in a system of vibrated
macroscopic rods. We propose a phenomenological theory of this phenomenon,
based on a coupled system of equations for local rods density and tilt. The
density evolution is described by modified Cahn-Hilliard equation, while the
tilt is described by the Ginzburg-Landau type equation. Our analysis shows
that, in accordance to the Cahn-Hilliard dynamics, the islands of the ordered
phase appear spontaneously and grow due to coarsening. The generic vortex
solutions of the Ginzburg-Landau equation for the tilt correspond to the
vortical motion of the rods around the cores which are located near the centers
of the islands.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Coarsening of granular clusters: two types of scaling behaviors
We report on an experimental study of small cluster dynamics during the
coarsening process in driven granular submonolayers of 120mkm bronze particles.
The techniques of electrostatic and vertical mechanical vibration were employed
to excite the granular gas. We measure the scaling exponent for the evaporation
of small clusters during coarsening. It was found that the surface area of
small clusters S vs time t behaves as S ~ (t_0-t)^(2/3) for lower frequencies
and S ~ (t_0-t) for higher frequencies. We argue that the change in the scaling
exponent is related to the transition from three dimensional to two dimensional
character of motion in the granular gas.Comment: 4 pages,5 figures, submitted to Phys.Rev.
Granular clustering in a hydrodynamic simulation
We present a numerical simulation of a granular material using hydrodynamic
equations. We show that, in the absence of external forces, such a system
phase-separates into high density and low density regions. We show that this
separation is dependent on the inelasticity of collisions, and comment on the
mechanism for this clustering behavior. Our results are compatible with the
granular clustering seen in experiments and molecular dynamic simulations of
inelastic hard disks.Comment: 4 pages, 5 figure
Collision statistics of driven granular materials
We present an experimental investigation of the statistical properties of
spherical granular particles on an inclined plane that are excited by an
oscillating side-wall. The data is obtained by high-speed imaging and particle
tracking techniques. We identify all particles in the system and link their
positions to form trajectories over long times. Thus, we identify particle
collisions to measure the effective coefficient of restitution and find a broad
distribution of values for the same impact angles. We find that the energy
inelasticity can take on values greater than one, which implies that the
rotational degrees play an important role in energy transfer. We also measure
the distance and the time between collision events in order to directly
determine the distribution of path lengths and the free times. These
distributions are shown to deviate from expected theoretical forms for elastic
spheres, demonstrating the inherent clustering in this system. We describe the
data with a two-parameter fitting function and use it to calculated the mean
free path and collision time. We find that the ratio of these values is
consistent with the average velocity. The velocity distribution are observed to
be strongly non-Gaussian and do not demonstrate any apparent universal
behavior. We report the scaling of the second moment, which corresponds to the
granular temperature, and higher order moments as a function of distance from
the driving wall. Additionally, we measure long time correlation functions in
both space and in the velocities to probe diffusion in a dissipative gas.Comment: 12 pages, 4 figures, uses revtex
Symmetry-breaking instability in a prototypical driven granular gas
Symmetry-breaking instability of a laterally uniform granular cluster (strip
state) in a prototypical driven granular gas is investigated. The system
consists of smooth hard disks in a two-dimensional box, colliding inelastically
with each other and driven, at zero gravity, by a "thermal" wall. The limit of
nearly elastic particle collisions is considered, and granular hydrodynamics
with the Jenkins-Richman constitutive relations is employed. The hydrodynamic
problem is completely described by two scaled parameters and the aspect ratio
of the box. Marginal stability analysis predicts a spontaneous symmetry
breaking instability of the strip state, similar to that predicted recently for
a different set of constitutive relations. If the system is big enough, the
marginal stability curve becomes independent of the details of the boundary
condition at the driving wall. In this regime, the density perturbation is
exponentially localized at the elastic wall opposite to the thermal wall. The
short- and long-wavelength asymptotics of the marginal stability curves are
obtained analytically in the dilute limit. The physics of the symmetry-breaking
instability is discussed.Comment: 11 pages, 14 figure
Dynamics of electrostatically-driven granular media. Effects of Humidity
We performed experimental studies of the effect of humidity on the dynamics
of electrostatically-driven granular materials. Both conducting and dielectric
particles undergo a phase transition from an immobile state (granular solid) to
a fluidized state (granular gas) with increasing applied field. Spontaneous
precipitation of solid clusters from the gas phase occurs as the external
driving is decreased. The clustering dynamics in conducting particles is
primarily controlled by screening of the electric field but is aided by
cohesion due to humidity. It is shown that humidity effects dominate the
clustering process with dielectric particles.Comment: 4 pages, 4 fig
Clustering transitions in vibro-fluidized magnetized granular materials
We study the effects of long range interactions on the phases observed in
cohesive granular materials. At high vibration amplitudes, a gas of magnetized
particles is observed with velocity distributions similar to non-magnetized
particles. Below a transition temperature compact clusters are observed to form
and coexist with single particles. The cluster growth rate is consistent with a
classical nucleation process. However, the temperature of the particles in the
clusters is significantly lower than the surrounding gas, indicating a
breakdown of equipartition. If the system is quenched to low temperatures, a
meta-stable network of connected chains self-assemble due to the anisotropic
nature of magnetic interactions between particles.Comment: 4 pages, 5 figure
Bifurcations of a driven granular system under gravity
Molecular dynamics study on the granular bifurcation in a simple model is
presented. The model consists of hard disks, which undergo inelastic
collisions; the system is under the uniform external gravity and is driven by
the heat bath. The competition between the two effects, namely, the
gravitational force and the heat bath, is carefully studied. We found that the
system shows three phases, namely, the condensed phase, locally fluidized
phase, and granular turbulent phase, upon increasing the external control
parameter. We conclude that the transition from the condensed phase to the
locally fluidized phase is distinguished by the existence of fluidized holes,
and the transition from the locally fluidized phase to the granular turbulent
phase is understood by the destabilization transition of the fluidized holes
due to mutual interference.Comment: 35 pages, 17 figures, to be published in PR