1,825 research outputs found
Cathode Ray Tube Display with Cancellation of Electric Field Emissions
A cathode ray tube display having reduced electric field emissions comprising a cathode ray tube 100, an element 200 for detecting modulations in the final anode voltage of the CRT, the signal not being directly dependent on the deflection driving means 115. A matching network 205 provides phase and gain correction to the signal from element 200, amplification means 210 receives the signal from network 205 and an emission means 215 radiates a cancelling electric field dependent on the modulations detected by said element 200
Specifying Self-configurable Component-based Systems with FracToy
International audienceOne of the key research challenges in autonomic computing is to define rigorous mathematical models for specifying, analyzing, and verifying high-level self-* policies. This paper presents the FracToy formal methodology to specify self-configurable component-based systems, and particularly both their component-based architectural description and their self-configuration policies. This rigorous methodology is based on the first-order relational logic, and is implemented with the Alloy formal specication language. The paper presents the dierent steps of the FracToy methodology and illustrates them on a self-configurable component-based example
The Casimir Problem of Spherical Dielectrics: Quantum Statistical and Field Theoretical Approaches
The Casimir free energy for a system of two dielectric concentric nonmagnetic
spherical bodies is calculated with use of a quantum statistical mechanical
method, at arbitrary temperature. By means of this rather novel method, which
turns out to be quite powerful (we have shown this to be true in other
situations also), we consider first an explicit evaluation of the free energy
for the static case, corresponding to zero Matsubara frequency ().
Thereafter, the time-dependent case is examined. For comparison we consider the
calculation of the free energy with use of the more commonly known field
theoretical method, assuming for simplicity metallic boundary surfaces.Comment: 31 pages, LaTeX, one new reference; version to appear in Phys. Rev.
Physical properties of a nickel-base alloy prepared by isostatic pressing and sintering of the powdered metal *
The physical and mechanical properties of samples of a nickel-base alloy fabricated by powder metallurgy were determined. The particle sizes of the powders used to make the samples varied from –80/+ 200 mesh to –325 mesh. The compaction pressure varied from 138 to 414 MN/m 2 and the sintering temperature varied from 1150 to 1250°C. The shrinkage during processing, the porosity, tensile strength, yield strength, elongation, and elastic modulus were used to characterize the samples. The strength of the samples generally increased with decreasing particle size of the powder and increasing compaction pressure and sintering temperatures. The porosity and strength, therefore, could be varied over a wide range by controlling the various parameters. The properties of the samples prepared by powder metallurgy were compared with those of the cast alloy and compact bone. Conditions can be selected that will yield equivalent or better properties by powder metallurgy than by casting.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74945/1/j.1365-2842.1976.tb00939.x.pd
Minimal Riesz energy on the sphere for axis-supported external fields
We investigate the minimal Riesz s-energy problem for positive measures on
the d-dimensional unit sphere S^d in the presence of an external field induced
by a point charge, and more generally by a line charge. The model interaction
is that of Riesz potentials |x-y|^(-s) with d-2 <= s < d. For a given
axis-supported external field, the support and the density of the corresponding
extremal measure on S^d is determined. The special case s = d-2 yields
interesting phenomena, which we investigate in detail. A weak* asymptotic
analysis is provided as s goes to (d-2)^+.Comment: 42 pages, 2 figure
A real Lorentz-FitzGerald contraction
Many condensed matter systems are such that their collective excitations at
low energies can be described by fields satisfying equations of motion formally
indistinguishable from those of relativistic field theory. The finite speed of
propagation of the disturbances in the effective fields (in the simplest
models, the speed of sound) plays here the role of the speed of light in
fundamental physics. However, these apparently relativistic fields are immersed
in an external Newtonian world (the condensed matter system itself and the
laboratory can be considered Newtonian, since all the velocities involved are
much smaller than the velocity of light) which provides a privileged coordinate
system and therefore seems to destroy the possibility of having a perfectly
defined relativistic emergent world. In this essay we ask ourselves the
following question: In a homogeneous condensed matter medium, is there a way
for internal observers, dealing exclusively with the low-energy collective
phenomena, to detect their state of uniform motion with respect to the medium?
By proposing a thought experiment based on the construction of a
Michelson-Morley interferometer made of quasi-particles, we show that a real
Lorentz-FitzGerald contraction takes place, so that internal observers are
unable to find out anything about their `absolute ' state of motion. Therefore,
we also show that an effective but perfectly defined relativistic world can
emerge in a fishbowl world situated inside a Newtonian (laboratory) system.
This leads us to reflect on the various levels of description in physics, in
particular regarding the quest towards a theory of quantum gravity.Comment: 6 pages, no figures. Minor changes reflect published versio
-dimensions Dirac fermions BEC-BCS cross-over thermodynamics
An effective Proca Lagrangian action is used to address the vector
condensation Lorentz violation effects on the equation of state of the strongly
interacting fermions system. The interior quantum fluctuation effects are
incorporated as an external field approximation indirectly through a fictive
generalized Thomson Problem counterterm background. The general analytical
formulas for the -dimensions thermodynamics are given near the unitary limit
region. In the non-relativistic limit for , the universal dimensionless
coefficient and energy gap are
reasonably consistent with the existed theoretical and experimental results. In
the unitary limit for and T=0, the universal coefficient can even
approach the extreme occasion corresponding to the infinite effective
fermion mass which can be mapped to the strongly coupled
two-dimensions electrons and is quite similar to the three-dimensions
Bose-Einstein Condensation of ideal boson gas. Instead, for , the
universal coefficient is negative, implying the non-existence of phase
transition from superfluidity to normal state. The solutions manifest the
quantum Ising universal class characteristic of the strongly coupled unitary
fermions gas.Comment: Improved versio
Pattern Stability and Trijunction Motion in Eutectic Solidification
We demonstrate by both experiments and phase-field simulations that lamellar
eutectic growth can be stable for a wide range of spacings below the point of
minimum undercooling at low velocity, contrary to what is predicted by existing
stability analyses. This overstabilization can be explained by relaxing Cahn's
assumption that lamellae grow locally normal to the eutectic interface.Comment: 4 pages, 5 eps figure
Background Thermal Contributions in Testing the Unruh Effect
We consider inertial and accelerated Unruh-DeWitt detectors moving in a
background thermal bath and calculate their excitation rates. It is shown that
for fast moving detectors such a thermal bath does not affect substantially the
excitation probability. Our results are discussed in connection with a possible
proposal of testing the Unruh effect in high energy particle accelerators.Comment: 13 pages, (REVTEX 3.0), 3 figures available upon reques
- …