19 research outputs found
Simple deterministic dynamical systems with fractal diffusion coefficients
We analyze a simple model of deterministic diffusion. The model consists of a
one-dimensional periodic array of scatterers in which point particles move from
cell to cell as defined by a piecewise linear map. The microscopic chaotic
scattering process of the map can be changed by a control parameter. This
induces a parameter dependence for the macroscopic diffusion coefficient. We
calculate the diffusion coefficent and the largest eigenmodes of the system by
using Markov partitions and by solving the eigenvalue problems of respective
topological transition matrices. For different boundary conditions we find that
the largest eigenmodes of the map match to the ones of the simple
phenomenological diffusion equation. Our main result is that the difffusion
coefficient exhibits a fractal structure by varying the system parameter. To
understand the origin of this fractal structure, we give qualitative and
quantitative arguments. These arguments relate the sequence of oscillations in
the strength of the parameter-dependent diffusion coefficient to the
microscopic coupling of the single scatterers which changes by varying the
control parameter.Comment: 28 pages (revtex), 12 figures (postscript), submitted to Phys. Rev.