14 research outputs found

    Pulsed Magnetic Field Measurements of the Composite Fermion Effective Mass

    Full text link
    Magnetotransport measurements of Composite Fermions (CF) are reported in 50 T pulsed magnetic fields. The CF effective mass is found to increase approximately linearly with the effective field B∗B^*, in agreement with our earlier work at lower fields. For a B∗B^* of 14 T it reaches 1.6me1.6m_e, over 20 times the band edge electron mass. Data from all fractions are unified by the single parameter B∗B^* for all the samples studied over a wide range of electron densities. The energy gap is found to increase like B∗\sqrt{B^*} at high fields.Comment: Has final table, will LaTeX without error

    Rotating Black Branes in the presence of nonlinear electromagnetic field

    Full text link
    In this paper, we consider a class of gravity whose action represents itself as a sum of the usual Einstein-Hilbert action with cosmological constant and an U(1)U(1) gauge field for which the action is given by a power of the Maxwell invariant. We present a class of the rotating black branes with Ricci flat horizon and show that the presented solutions may be interpreted as black brane solutions with two event horizons, extreme black hole and naked singularity provided the parameters of the solutions are chosen suitably. We investigate the properties of the solutions and find that for the special values of the nonlinear parameter, the solutions are not asymptotically anti-deSitter. At last, we obtain the conserved quantities of the rotating black branes and find that the nonlinear source effects on the electric field, the behavior of spacetime, type of singularity and other quantities.Comment: 7 pages, 5 figures, to appear in EPJ

    The Effect of Diet on the Mammalian Gut Flora and Its Metabolic Activities

    No full text

    Many Labs 2: Investigating Variation in Replicability Across Samples and Settings

    No full text
    We conducted preregistered replications of 28 classic and contemporary published findings, with protocols that were peer reviewed in advance, to examine variation in effect magnitudes across samples and settings. Each protocol was administered to approximately half of 125 samples that comprised 15,305 participants from 36 countries and territories. Using the conventional criterion of statistical significance (p < .05), we found that 15 (54%) of the replications provided evidence of a statistically significant effect in the same direction as the original finding. With a strict significance criterion (p < .0001), 14 (50%) of the replications still provided such evidence, a reflection of the extremely high-powered design. Seven (25%) of the replications yielded effect sizes larger than the original ones, and 21 (75%) yielded effect sizes smaller than the original ones. The median comparable Cohen’s ds were 0.60 for the original findings and 0.15 for the replications. The effect sizes were small (< 0.20) in 16 of the replications (57%), and 9 effects (32%) were in the direction opposite the direction of the original effect. Across settings, the Q statistic indicated significant heterogeneity in 11 (39%) of the replication effects, and most of those were among the findings with the largest overall effect sizes; only 1 effect that was near zero in the aggregate showed significant heterogeneity according to this measure. Only 1 effect had a tau value greater than .20, an indication of moderate heterogeneity. Eight others had tau values near or slightly above .10, an indication of slight heterogeneity. Moderation tests indicated that very little heterogeneity was attributable to the order in which the tasks were performed or whether the tasks were administered in lab versus online. Exploratory comparisons revealed little heterogeneity between Western, educated, industrialized, rich, and democratic (WEIRD) cultures and less WEIRD cultures (i.e., cultures with relatively high and low WEIRDness scores, respectively). Cumulatively, variability in the observed effect sizes was attributable more to the effect being studied than to the sample or setting in which it was studied
    corecore