1,873 research outputs found
Complementarity of the CERN Large Hadron Collider and the International Linear Collider
The next-generation high-energy facilities, the CERN Large Hadron Collider
(LHC) and the prospective International Linear Collider (ILC), are
expected to unravel new structures of matter and forces from the electroweak
scale to the TeV scale. In this report we review the complementary role of LHC
and ILC in drawing a comprehensive and high-precision picture of the mechanism
breaking the electroweak symmetries and generating mass, and the unification of
forces in the frame of supersymmetry.Comment: 14 pages, 17 figures, to be published in "Supersymmetry on the Eve of
the LHC", a special volume of European Physical Journal C, Particles and
Fields (EPJC) in memory of Julius Wes
A Comprehensive Survey of Brane Tilings
An infinite class of gauge theories can be engineered on
the worldvolume of D3-branes probing toric Calabi-Yau 3-folds. This kind of
setup has multiple applications, ranging from the gauge/gravity correspondence
to local model building in string phenomenology. Brane tilings fully encode the
gauge theories on the D3-branes and have substantially simplified their
connection to the probed geometries. The purpose of this paper is to push the
boundaries of computation and to produce as comprehensive a database of brane
tilings as possible. We develop efficient implementations of brane tiling tools
particularly suited for this search. We present the first complete
classification of toric Calabi-Yau 3-folds with toric diagrams up to area 8 and
the corresponding brane tilings. This classification is of interest to both
physicists and mathematicians alike.Comment: 39 pages. Link to Mathematica modules provide
Relating the CMSSM and SUGRA models with GUT scale and Super-GUT scale Supersymmetry Breaking
While the constrained minimal supersymmetric standard model (CMSSM) with
universal gaugino masses, m_{1/2}, scalar masses, m_0, and A-terms, A_0,
defined at some high energy scale (usually taken to be the GUT scale) is
motivated by general features of supergravity models, it does not carry all of
the constraints imposed by minimal supergravity (mSUGRA). In particular, the
CMSSM does not impose a relation between the trilinear and bilinear soft
supersymmetry breaking terms, B_0 = A_0 - m_0, nor does it impose the relation
between the soft scalar masses and the gravitino mass, m_0 = m_{3/2}. As a
consequence, tan(\beta) is computed given values of the other CMSSM input
parameters. By considering a Giudice-Masiero (GM) extension to mSUGRA, one can
introduce new parameters to the K\"ahler potential which are associated with
the Higgs sector and recover many of the standard CMSSM predictions. However,
depending on the value of A_0, one may have a gravitino or a neutralino dark
matter candidate. We also consider the consequences of imposing the
universality conditions above the GUT scale. This GM extension provides a
natural UV completion for the CMSSM.Comment: 16 pages, 11 figures; added erratum correcting several equations and
results in Sec.2, Sec.3 and 4 remain unaffected and conclusions unchange
Colliders and Cosmology
Dark matter in variations of constrained minimal supersymmetric standard
models will be discussed. Particular attention will be given to the comparison
between accelerator and direct detection constraints.Comment: Submitted for the SUSY07 proceedings, 15 pages, LaTex, 26 eps figure
Tracing Ghost Cavities with Low Frequency Radio Observations
We present X-ray and multi-frequency radio observations of the central radio
sources in several X-ray cavity systems. We show that targeted radio
observations are key to determining if the lobes are being actively fed by the
central AGN. Low frequency observations provide a unique way to study both the
lifecycle of the central radio source as well as its energy input into the ICM
over several outburst episodes.Comment: 6 pages, 4 figures, To appear in the Proceedings of "Heating vs.
Cooling in Galaxies and Clusters of Galaxies", eds. H. Boehringer, P.
Schuecker, G. W. Pratt & A. Finoguenov (ESO Astrophysics Symposia,
Springer-Verlag), Garching (Germany), August 200
Cryptic diversity within the major trypanosomiasis vector Glossina fuscipes revealed by molecular markers
Background: The tsetse fly Glossina fuscipes s.l. is responsible for the transmission of approximately 90% of cases of human African trypanosomiasis (HAT) or sleeping sickness. Three G. fuscipes subspecies have been described, primarily based upon subtle differences in the morphology of their genitalia. Here we describe a study conducted across the range of this important vector to determine whether molecular evidence generated from nuclear DNA (microsatellites and gene sequence information), mitochondrial DNA and symbiont DNA support the existence of these taxa as discrete taxonomic units.
Principal Findings: The nuclear ribosomal Internal transcribed spacer 1 (ITS1) provided support for the three subspecies. However nuclear and mitochondrial sequence data did not support the monophyly of the morphological subspecies G. f.fuscipes or G. f. quanzensis. Instead, the most strongly supported monophyletic group was comprised of flies sampled fromEthiopia. Maternally inherited loci (mtDNA and symbiont) also suggested monophyly of a group from Lake Victoria basin and Tanzania, but this group was not supported by nuclear loci, suggesting different histories of these markers. Microsatellite data confirmed strong structuring across the range of G. fuscipes s.l., and was useful for deriving the interrelationship of closely related populations.
Conclusion/Significance: We propose that the morphological classification alone is not used to classify populations of G. fuscipes for control purposes. The Ethiopian population, which is scheduled to be the target of a sterile insect release (SIT) programme, was notably discrete. From a programmatic perspective this may be both positive, given that it may reflect limited migration into the area or negative if the high levels of differentiation are also reflected in reproductive isolation between this population and the flies to be used in the release programme
Likelihood Functions for Supersymmetric Observables in Frequentist Analyses of the CMSSM and NUHM1
On the basis of frequentist analyses of experimental constraints from
electroweak precision data, g-2, B physics and cosmological data, we
investigate the parameters of the constrained MSSM (CMSSM) with universal soft
supersymmetry-breaking mass parameters, and a model with common non-universal
Higgs masses (NUHM1). We present chi^2 likelihood functions for the masses of
supersymmetric particles and Higgs bosons, as well as b to s gamma, b to mu mu
and the spin-independent dark matter scattering cross section. In the CMSSM we
find preferences for sparticle masses that are relatively light. In the NUHM1
the best-fit values for many sparticle masses are even slightly smaller, but
with greater uncertainties. The likelihood functions for most sparticle masses
are cut off sharply at small masses, in particular by the LEP Higgs mass
constraint. Both in the CMSSM and the NUHM1, the coannihilation region is
favoured over the focus-point region at about the 3-sigma level, largely but
not exclusively because of g-2. Many sparticle masses are highly correlated in
both the CMSSM and NUHM1, and most of the regions preferred at the 95% C.L. are
accessible to early LHC running. Some slepton and chargino/neutralino masses
should be in reach at the ILC. The masses of the heavier Higgs bosons should be
accessible at the LHC and the ILC in portions of the preferred regions in the
(M_A, tan beta) plane. In the CMSSM, the likelihood function for b to mu mu is
peaked close to the Standard Model value, but much larger values are possible
in the NUHM1. We find that values of the DM cross section > 10^{-10} pb are
preferred in both the CMSSM and the NUHM1. We study the effects of dropping the
g-2, b to s gamma, relic density and M_h constraints.Comment: 34 pages, 24 figure
de Haas-van Alphen effect investigations of the electronic structure of pure and aluminum-doped MgB_2
Understanding the superconducting properties of MgB_2 is based strongly on
knowledge of its electronic structure. In this paper we review experimental
measurements of the Fermi surface parameters of pure and Al-doped MgB_2 using
the de Haas-van Alphen (dHvA) effect. In general, the measurements are in
excellent agreement with the theoretical predictions of the electronic
structure, including the strength of the electron-phonon coupling on each Fermi
surface sheet. For the Al doped samples, we are able to measure how the band
structure changes with doping and again these are in excellent agreement with
calculations based on the virtual crystal approximation. We also review work on
the dHvA effect in the superconducting state.Comment: Contribution to the special issue of Physica C "Superconductivity in
MgB2: Physics and Applications" (10 Pages with figures
Excitation spectrum of vortex lattices in rotating Bose-Einstein condensates
Using the coarse grain averaged hydrodynamic approach, we calculate the
excitation spectrum of vortex lattices sustained in rotating Bose-Einstein
condensates. The spectrum gives the frequencies of the common-mode longitudinal
waves in the hydrodynamic regime, including those of the higher-order
compressional modes. Reasonable agreement with the measurements taken in a
recent JILA experiment is found, suggesting that one of the longitudinal modes
reported in the experiment is likely to be the , mode.Comment: 2 figures. Submitted to Physical Review A. v2 contains more
references. No change in the main resul
The K^*_0(800) scalar resonance from Roy-Steiner representations of pi K scattering
We discuss the existence of the light scalar meson K^*_0(800) (also called
kappa) in a rigorous way, by showing the presence of a pole in the pi K --> pi
K amplitude on the second Riemann sheet. For this purpose, we study the domain
of validity of two classes of Roy-Steiner representations in the complex energy
plane. We prove that one of them is valid in a region sufficiently broad in the
imaginary direction. From this representation, we compute the l=0 partial wave
in the complex plane with neither additional approximation nor model
dependence, relying only on experimental data. A scalar resonance with
strangeness S=1 is found with the following mass and width: E_kappa = 658 \pm
13 MeV and Gamma_kappa = 557 \pm 24 MeV.Comment: 16 pages, 8 figures. Domain of validity of a Roy-Steiner
representation corrected and enlarged, and features of the K^*_0(800) pole
discussed in more details. Conclusions unchange
- …