3 research outputs found

    Aspergillus in critically ill covid‐19 patients

    Get PDF
    Several reports have been published on Aspergillus findings in COVID‐19 patients leading to a proposition of new disease entity COVID‐19‐associated pulmonary aspergillosis. This scoping review is designed at clarifying the concepts on how the findings of Aspergillus spp. in COVID‐19 patients were interpreted. We searched Medline to identify the studies on Aspergillus spp. findings in COVID‐19 patients. Included were observational studies containing the following information: explicit mention of the total number of the study population, study period, reason fo

    Temporal Kinetics of RNAemia and Associated Systemic Cytokines in Hospitalized COVID-19 Patients

    No full text
    COVID-19 is associated with a wide range of extrarespiratory complications, of which the pathogenesis is currently not fully understood. However, both systemic spread and systemic inflammatory responses are thought to contribute to the systemic pathogenesis. In this study, we determined the temporal kinetics of viral RNA in serum (RNAemia) and the associated inflammatory cytokines and chemokines during the course of COVID-19 in hospitalized patients. We show that RNAemia can be detected in 90% of the patients who develop critical disease, compared to 50% of the patients who develop moderate or severe disease. Furthermore, RNAemia lasts longer in patients who develop critical disease. Elevated levels of interleukin-10 (IL-10) and MCP-1-but not IL-6-are associated with viral load in serum, whereas higher levels of IL-6 in serum were associated with the development of critical disease. In conclusion, RNAemia is common in hospitalized patients, with the highest frequency and duration in patients who develop critical disease. The fact that several cytokines or chemokines are directly associated with the presence of viral RNA in the circulation suggests that the development of RNAemia is an important factor in the systemic pathogenesis of COVID-19. IMPORTANCE Severe COVID-19 can be considered a systemic disease as many extrarespiratory complications occur. However, the systemic pathogenesis is poorly understood. Here, we show that the presence of viral RNA in the blood (RNAemia) occurs more frequently in patients who develop critical disease, compared to patients with moderate or severe disease. In addition, RNAemia is associated with increased levels of inflammatory cytokines and chemokines, like MCP-1 and IL-10, in serum during the course of disease. This suggests that extrarespiratory spread of SARS-CoV-2 contributes to systemic inflammatory responses, which are an important factor in the systemic pathogenesis of COVID-19.</p

    Seasonal coronavirus-specific B cells with limited SARS-CoV-2 cross-reactivity dominate the IgG response in severe COVID-19

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Little is known about the interplay between preexisting immunity to endemic seasonal coronaviruses and the development of a SARS-CoV-2–specific IgG response. We investigated the kinetics, breadth, magnitude, and level of cross-reactivity of IgG antibodies against SARS-CoV-2 and heterologous seasonal and epidemic coronaviruses at the clonal level in patients with mild or severe COVID-19 as well as in disease control patients. We assessed antibody reactivity to nucleocapsid and spike antigens and correlated this IgG response to SARS-CoV-2 neutralization. Patients with COVID-19 mounted a mostly type-specific SARS-CoV-2 response. Additionally, IgG clones directed against a seasonal coronavirus were boosted in patients with severe COVID-19. These boosted clones showed limited cross-reactivity and did not neutralize SARS-CoV-2. These findings indicate a boost of poorly protective CoV-specific antibodies in patients with COVID-19 that correlated with disease severity, revealing “original antigenic sin.
    corecore