805 research outputs found

    Penrose Limits of the Baryonic D5-brane

    Full text link
    The Penrose limits of a D5-brane wrapped on the sphere of AdS_5 x S^5 and connected to the boundary by M fundamental strings, which is dual to the baryon vertex of the N=4 SU(M) super Yang-Mills theory, are investigated. It is shown that, for null geodesics that lead to the maximally supersymmetric Hpp-wave background, the resulting D5-brane is a 1/2-supersymmetric null brane. For an appropriate choice of radial geodesic, however, the limiting configuration is 1/4-supersymmetric and closely related to the Penrose limit of a flat space BIon.Comment: LaTeX, 1+18 pages, 1 figure; v2: obvious misquotation of the number of preserved supersymmetries correcte

    Hamiltonian light-front field theory within an AdS/QCD basis

    Full text link
    Non-perturbative Hamiltonian light-front quantum field theory presents opportunities and challenges that bridge particle physics and nuclear physics. Fundamental theories, such as Quantum Chromodynmamics (QCD) and Quantum Electrodynamics (QED) offer the promise of great predictive power spanning phenomena on all scales from the microscopic to cosmic scales, but new tools that do not rely exclusively on perturbation theory are required to make connection from one scale to the next. We outline recent theoretical and computational progress to build these bridges and provide illustrative results for nuclear structure and quantum field theory. As our framework we choose light-front gauge and a basis function representation with two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD model obtained from light-front holography.Comment: To appear in the proceedings of Light-Cone 2009: Relativistic Hadronic and Particle Physics, July 8-13, 2009, Sao Jose dos Campos, Brazi

    Theory for Metal Hydrides with Switchable Optical Properties

    Full text link
    Recently it has been discovered that lanthanum, yttrium, and other metal hydride films show dramatic changes in the optical properties at the metal-insulator transition. Such changes on a high energy scale suggest the electronic structure is best described by a local model based on negatively charged hydrogen (H^-) ions. We develop a many-body theory for the strong correlation in a H^- ion lattice. The metal hydride is described by a large UU-limit of an Anderson lattice model. We use lanthanum hydride as a prototype of these compounds, and find LaH3_3 is an insulator with a substantial gap consistent with experiments. It may be viewed either as a Kondo insulator or a band insulator due to strong electron correlation. A H vacancy state in LaH3_3 is found to be highly localized due to the strong bonding between the electron orbitals of hydrogen and metal atoms. Unlike the impurity states in the usual semiconductors, there is only weak internal optical transitions within the vacancy. The metal-insulator transition takes place in a band of these vacancy states.Comment: 18 pages, 16 figures and 6 tables. Submitted to PR

    Finite Size Scaling for Low Energy Excitations in Integer Heisenberg Spin Chains

    Full text link
    In this paper we study the finite size scaling for low energy excitations of S=1S=1 and S=2S=2 Heisenberg chains, using the density matrix renormalization group technique. A crossover from 1/L1/L behavior (with LL as the chain length) for medium chain length to 1/L21/L^2 scaling for long chain length is found for excitations in the continuum band as the length of the open chain increases. Topological spin S=1/2S=1/2 excitations are shown to give rise to the two lowest energy states for both open and periodic S=1S=1 chains. In periodic chains these two excitations are ``confined'' next to each other, while for open chains they are two free edge 1/2 spins. The finite size scaling of the two lowest energy excitations of open S=2S=2 chains is determined by coupling the two free edge S=1S=1 spins. The gap and correlation length for S=2S=2 open Heisenberg chains are shown to be 0.082 (in units of the exchange JJ) and 47, respectively.Comment: 4 pages (two column), PS file, to be appear as a PRB Brief Repor

    Anisotropic colloids through non-trivial buckling

    Full text link
    We present a study on buckling of colloidal particles, including experimental, theoretical and numerical developments. Oil-filled thin shells prepared by emulsion templating show buckling in mixtures of water and ethanol, due to dissolution of the core in the external medium. This leads to conformations with a single depression, either axisymmetric or polygonal depending on the geometrical features of the shells. These conformations could be theoretically and/or numerically reproduced in a model of homogeneous spherical thin shells with bending and stretching elasticity, submitted to an isotropic external pressure.Comment: submitted to EPJ

    Interacting Agegraphic Dark Energy

    Full text link
    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\'{a}rolyh\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed.Comment: 10 pages, 5 figures, revtex4; v2: references added; v3: accepted by Eur. Phys. J. C; v4: published versio

    Electronic Structure of the Complex Hydride NaAlH4

    Full text link
    Density functional calculations of the electronic structure of the complex hydride NaAlH4 and the reference systems NaH and AlH3 are reported. We find a substantially ionic electronic structure for NaAlH4, which emphasizes the importance of solid state effects in this material. The relaxed hydrogen positions in NaAlH4 are in good agreement with recent experiment. The electronic structure of AlH3 is also ionic. Implications for the binding of complex hydrides are discussed.Comment: 4 pages, 5 figure

    Theta angle versus CP violation in the leptonic sector

    Get PDF
    Assuming that the axion mechanism of solving the strong CP problem does not exist and the vanishing of theta at tree level is achieved by some model-building means, we study the naturalness of having large CP-violating sources in the leptonic sector. We consider the radiative mechanisms which transfer a possibly large CP-violating phase in the leptonic sector to the theta parameter. It is found that large theta cannot be induced in the models with one Higgs doublet as at least three loops are required in this case. In the models with two or more Higgs doublets the dominant source of theta is the phases in the scalar potential, induced by CP violation in leptonic sector. Thus, in the MSSM framework the imaginary part of the trilinear soft-breaking parameter A_l generates the corrections to the theta angle already at one loop. These corrections are large, excluding the possibility of large phases, unless the universality in the slepton sector is strongly violated.Comment: 5 pages, 2 figure

    Selective deletion of PPARβ/δ in fibroblasts causes dermal fibrosis by attenuated LRG1 expression.

    Get PDF
    Connective tissue diseases of the skin are characterized by excessive collagen deposition in the skin and internal organs. Fibroblasts play a pivotal role in the clinical presentation of these conditions. Nuclear receptor peroxisome-proliferator activated receptors (PPARs) are therapeutic targets for dermal fibrosis, but the contribution of the different PPAR subtypes are poorly understood. Particularly, the role of fibroblast PPARβ/δ in dermal fibrosis has not been elucidated. Thus, we generated a mouse strain with selective deletion of PPARβ/δ in the fibroblast (FSPCre- <i>Pparb/d</i> <sup>-/-</sup> ) and interrogated its epidermal and dermal transcriptome profiles. We uncovered a downregulated gene, leucine-rich alpha-2-glycoprotein-1 ( <i>Lrg1</i> ), of previously unknown function in skin development and architecture. Our findings suggest that the regulation of <i>Lrg1</i> by PPARβ/δ in fibroblasts is an important signaling conduit integrating PPARβ/δ and TGFβ1-signaling networks in skin health and disease. Thus, the FSPCre- <i>Pparb/d</i> <sup>-/-</sup> mouse model could serve as a novel tool in the current gunnery of animal models to better understand dermal fibrosis

    Dissecting molecular network structures using a network subgraph approach

    Get PDF
    Biological processes are based on molecular networks, which exhibit biological functions through interactions of genetic elements or proteins. This study presents a graph-based method to characterize molecular networks by decomposing the networks into directed multigraphs: network subgraphs. Spectral graph theory, reciprocity and complexity measures were used to quantify the network subgraphs. Graph energy, reciprocity and cyclomatic complexity can optimally specify network subgraphs with some degree of degeneracy. Seventy-one molecular networks were analyzed from three network types: cancer networks, signal transduction networks, and cellular processes. Molecular networks are built from a finite number of subgraph patterns and subgraphs with large graph energies are not present, which implies a graph energy cutoff. In addition, certain subgraph patterns are absent from the three network types. Thus, the Shannon entropy of the subgraph frequency distribution is not maximal. Furthermore, frequently-observed subgraphs are irreducible graphs. These novel findings warrant further investigation and may lead to important applications. Finally, we observed that cancer-related cellular processes are enriched with subgraph-associated driver genes. Our study provides a systematic approach for dissecting biological networks and supports the conclusion that there are organizational principles underlying molecular networks
    corecore