21 research outputs found

    It is all me: the effect of viewpoint on visual-vestibular recalibration

    Get PDF
    Participants performed a visual–vestibular motor recalibration task in virtual reality. The task consisted of keeping the extended arm and hand stable in space during a whole-body rotation induced by a robotic wheelchair. Performance was first quantified in a pre-test in which no visual feedback was available during the rotation. During the subsequent adaptation phase, optical flow resulting from body rotation was provided. This visual feedback was manipulated to create the illusion of a smaller rotational movement than actually occurred, hereby altering the visual–vestibular mapping. The effects of the adaptation phase on hand stabilization performance were measured during a post-test that was identical to the pre-test. Three different groups of subjects were exposed to different perspectives on the visual scene, i.e., first-person, top view, or mirror view. Sensorimotor adaptation occurred for all three viewpoint conditions, performance in the post-test session showing a marked under-compensation relative to the pre-test performance. In other words, all viewpoints gave rise to a remapping between vestibular input and the motor output required to stabilize the arm. Furthermore, the first-person and mirror view adaptation induced a significant decrease in variability of the stabilization performance. Such variability reduction was not observed for the top view adaptation. These results suggest that even if all three viewpoints can evoke substantial adaptation aftereffects, the more naturalistic first-person view and the richer mirror view should be preferred when reducing motor variability constitutes an important issue

    故富田博士記念事業資金募集廣告

    Get PDF
    While listeners' emotional response to music is the subject of numerous studies, less attention is paid to the dynamic emotion variations due to the interaction between artists and audiences in live improvised music performances. By opening a direct communication channel from audience members to performers, the Mood Conductor system provides an experimental framework to study this phenomenon. Mood Conductor facilitates interactive performances and thus also has an inherent entertainment value. The framework allows audience members to send emotional directions using their mobile devices in order to ``conduct'' improvised performances. Emotion coordinates indicted by the audience in the arousal-valence space are aggregated and clustered to create a video projection. This is used by the musicians as guidance, and provides visual feedback to the audience. Three different systems were developed and tested within our framework so far. These systems were trialled in several public performances with different ensembles. Qualitative and quantitative evaluations demonstrated that musicians and audiences were highly engaged with the system, and raised new insights enabling future improvements of the framework
    corecore