11 research outputs found
Analytic and Reidemeister torsion for representations in finite type Hilbert modules
For a closed Riemannian manifold we extend the definition of analytic and
Reidemeister torsion associated to an orthogonal representation of fundamental
group on a Hilbert module of finite type over a finite von Neumann algebra. If
the representation is of determinant class we prove, generalizing the
Cheeger-M\"uller theorem, that the analytic and Reidemeister torsion are equal.
In particular, this proves the conjecture that for closed Riemannian manifolds
with positive Novikov-Shubin invariants, the L2 analytic and Reidemeister
torsions are equal.Comment: 78 pages, AMSTe
Positivity of relative canonical bundles and applications
Given a family of canonically polarized manifolds, the
unique K\"ahler-Einstein metrics on the fibers induce a hermitian metric on the
relative canonical bundle . We use a global elliptic
equation to show that this metric is strictly positive on , unless
the family is infinitesimally trivial.
For degenerating families we show that the curvature form on the total space
can be extended as a (semi-)positive closed current. By fiber integration it
follows that the generalized Weil-Petersson form on the base possesses an
extension as a positive current. We prove an extension theorem for hermitian
line bundles, whose curvature forms have this property. This theorem can be
applied to a determinant line bundle associated to the relative canonical
bundle on the total space. As an application the quasi-projectivity of the
moduli space of canonically polarized varieties
follows.
The direct images , , carry natural hermitian metrics. We prove an
explicit formula for the curvature tensor of these direct images. We apply it
to the morphisms that are induced by the Kodaira-Spencer map and obtain a differential
geometric proof for hyperbolicity properties of .Comment: Supercedes arXiv:0808.3259v4 and arXiv:1002.4858v2. To appear in
Invent. mat
Equidistribution of zeros of holomorphic sections in the non compact setting
We consider N-tensor powers of a positive Hermitian line bundle L over a
non-compact complex manifold X. In the compact case, B. Shiffman and S.
Zelditch proved that the zeros of random sections become asymptotically
uniformly distributed with respect to the natural measure coming from the
curvature of L, as N tends to infinity. Under certain boundedness assumptions
on the curvature of the canonical line bundle of X and on the Chern form of L
we prove a non-compact version of this result. We give various applications,
including the limiting distribution of zeros of cusp forms with respect to the
principal congruence subgroups of SL2(Z) and to the hyperbolic measure, the
higher dimensional case of arithmetic quotients and the case of orthogonal
polynomials with weights at infinity. We also give estimates for the speed of
convergence of the currents of integration on the zero-divisors.Comment: 25 pages; v.2 is a final update to agree with the published pape
Non-Kaehler Heterotic String Compactifications with non-zero fluxes and constant dilaton
We construct new explicit compact supersymmetric valid solutions with
non-zero field strength, non-flat instanton and constant dilaton to the
heterotic equations of motion in dimension six. We present balanced Hermitian
structures on compact nilmanifolds in dimension six satisfying the heterotic
supersymmetry equations with non-zero flux, non-flat instanton and constant
dilaton which obey the three-form Bianchi identity with curvature term taken
with respect to either the Levi-Civita, the (+)-connection or the Chern
connection. Among them, all our solutions with respect to the (+)-connection on
the compact nilmanifold satisfy the heterotic equations of motion.Comment: LaTeX, 16 pp., no figures, new Theorem 1.1, references adde
A geometric cascade for the spectral approximation of the Navier-Stokes equations
We explain some ideas contained in some recent papers, concerning the statistical long time behaviour of the spectral approximation of the Navier-Stokes equations, driven by a highly degenerate white noise forcing. The analysis highlights that the ergodicity of the stochastic system is obtained by a geometric cascade. Such a cascade can be interpreted as the mathematical counterpart of the energy cascade, a well-known phenomenon in turbulence.
In the second part of the paper, we analyse the results of some numerical simulations. Such simulations give a hint on the behaviour of the system in the case where the white noise forcing fails the assumptions of the main theorem
The IMA Volumes in Mathematics an its Applications, vol. 14