14 research outputs found
Simplifying microfluidic separation devices towards field-detection of blood parasites
With our sights set on a simple and inexpensive diagnostics device based on extraction and enrichment of parasites from human blood, we present a device design that relies on a combination of multiple different deterministic lateral displacement arrays. Our end goal is a microfluidic device that will be easy to use in the rural, resource-deprived areas where simple-to-use medical tools are crucially needed for rapid and accurate diagnosis. Here, we exemplify this in the application of blood parasite enrichment from a sample of blood. With trypanosomes as a model system we show a combination of functionalities designed into a single device based on several deterministic lateral displacement arrays of different depths arranged in series. With only one inlet and no expensive or complicated pumping mechanisms to run separations we ensure the level of simplicity necessary for field use
Solute transport on the sub 100 ms scale across the lipid bilayer membrane of individual proteoliposomes
Screening assays designed to probe ligand and drug-candidate regulation of membrane proteins responsible for ion-translocation across the cell membrane are wide spread, while efficient means to screen membrane-protein facilitated transport of uncharged solutes are sparse. We report on a microfluidic-based system to monitor transport of uncharged solutes across the membrane of multiple (>100) individually resolved surface-immobilized liposomes. This was accomplished by rapidly switching (<10 ms) the solution above dye-containing liposomes immobilized on the floor of a microfluidic channel. With liposomes encapsulating the pH-sensitive dye carboxyfluorescein (CF), internal changes in pH induced by transport of a weak acid (acetic acid) could be measured at time scales down to 25 ms. The applicability of the set up to study biological transport reactions was demonstrated by examining the osmotic water permeability of human aquaporin (AQP5) reconstituted in proteoliposomes. In this case, the rate of osmotic-induced volume changes of individual proteoliposomes was time resolved by imaging the self quenching of encapsulated calcein in response to an osmotic gradient. Single-liposome analysis of both pure and AQP5-containing liposomes revealed a relatively large heterogeneity in osmotic permeability. Still, in the case of AQP5-containing liposomes, the single liposome data suggest that the membrane-protein incorporation efficiency depends on liposome size, with higher incorporation efficiency for larger liposomes. The benefit of low sample consumption and automated liquid handling is discussed in terms of pharmaceutical screening applications
High resolution 100 kV electron beam lithography in SU-8
High resolution 100 kV electron beam lithography in thin layers of the negative resist SU-8 is demonstrated. Sub-30 nm lines with a pitch down to 300 nm are written in 100 nm thick SU-8. Two reactive ion etch processes are developed in order to transfer the SU-8 structures into a silicon substrate, a Soft O-2-Plasma process to remove SU-8 residues on the silicon surface after development and a highly anisotropic SF6/O-2/CHF3 based process to transfer the pattern into a silicon substrate, with selectivity between silicon and SU-8 of approximately 2. 30 nm lines patterned in SU-8 are successfully transferred into a silicon substrate, which is used as a stamp in a nanoimprint lithography process to fabricate a nanochannel device for DNA stretching experiments. (c) 2006 Elsevier B.V. All rights reserved