491 research outputs found
Double marking revisited
In 2002, the Qualifications and Curriculum Authority (QCA) published the report of an independent panel of experts into maintaining standards at Advanced Level (A-Level). One of its recommendations was for: ‘limited experimental double marking of scripts in subjects such as English to determine whether the strategy would signi-ficantly reduce errors of measurement’ (p. 24). This recommendation provided the impetus for this paper which reviews the all but forgotten literature on double marking and considers its relevance now
Lepton Flavour Violation in a Class of Lopsided SO(10) Models
A class of predictive SO(10) grand unified theories with highly asymmetric
mass matrices, known as lopsided textures, has been developed to accommodate
the observed mixing in the neutrino sector. The model class effectively
determines the rate for charged lepton flavour violation, and in particular the
branching ratio for , assuming that the supersymmetric GUT
breaks directly to the constrained minimal supersymmetric standard model
(CMSSM). We find that in light of the combined constraints on the CMSSM
parameters from direct searches and from the WMAP satellite observations, the
resulting predicted rate for in this model class can be
within the current experimental bounds for low , but that the next
generation of experiments would effectively rule out this
model class if LFV is not detected.Comment: 23 page
Lepton Flavor Violation in the SUSY-GUT Models with Lopsided Mass Matrix
The tiny neutrino masses measured in the neutrino oscillation experiments can
be naturally explained by the supersymmetric see-saw mechanism. If the
supersymmetry breaking is mediated by gravity, the see-saw models may predict
observable lepton flavor violating effects. In this work, we investigate the
lepton flavor violating process in the kind of neutrino mass
models based on the idea of the ``lopsided'' form of the charged lepton mass
matrix. The constraints set by the muon anomalous magnetic moment are taken
into account. We find the present models generally predict a much larger
branching ratio of than the experimental limit. Conversely,
this process may give strong constraint on the lepton flavor structure.
Following this constraint we then find a new kind of the charged lepton mass
matrix. The feature of the structure is that both the elements between the 2-3
and 1-3 generations are ``lopsided''. This structure produces a very small 1-3
mixing and a large 1-2 mixing in the charged lepton sector, which naturally
leads to small and the LMA solution for the solar neutrino
problem.Comment: 24 pages, 8 figure
Lepton Flavor Violating Process in Bi-maximal texture of Neutrino Mixings
We investigate the lepton flavor violation in the framework of the MSSM with
right-handed neutrinos taking the large mixing angle MSW solution in the
quasi-degenerate and the inverse-hierarchical neutrino masses. We predict the
branching ratio of and processes
assuming the degenerate right-handed Majorana neutrino masses. We find that the
branching ratio in the quasi-degenerate neutrino mass spectrum is 100 times
smaller than the ones in the inverse-hierarchical and the hierarchical neutrino
spectra. We emphasize that the magnitude of is one of important
ingredients to predict BR(). The effect of the deviation
from the complete-degenerate right-handed Majorana neutrino masses are also
estimated. Furtheremore, we examine the S_{3\sL}\times S_{3\sR} model, which
gives the quasi-degenerate neutrino masses, and the Shafi-Tavartkiladze model,
which gives the inverse-hierarchical neutrino masses. Both predicted branching
ratios of are smaller than the experimantal bound.Comment: Latex file, 38 pages, 10 figures, revised versio
Hydrophobic and ionic-interactions in bulk and confined water with implications for collapse and folding of proteins
Water and water-mediated interactions determine thermodynamic and kinetics of
protein folding, protein aggregation and self-assembly in confined spaces. To
obtain insights into the role of water in the context of folding problems, we
describe computer simulations of a few related model systems. The dynamics of
collapse of eicosane shows that upon expulsion of water the linear hydrocarbon
chain adopts an ordered helical hairpin structure with 1.5 turns. The structure
of dimer of eicosane molecules has two well ordered helical hairpins that are
stacked perpendicular to each other. As a prelude to studying folding in
confined spaces we used simulations to understand changes in hydrophobic and
ionic interactions in nano droplets. Solvation of hydrophobic and charged
species change drastically in nano water droplets. Hydrophobic species are
localized at the boundary. The tendency of ions to be at the boundary where
water density is low increases as the charge density decreases. Interaction
between hydrophobic, polar, and charged residue are also profoundly altered in
confined spaces. Using the results of computer simulations and accounting for
loss of chain entropy upon confinement we argue and then demonstrate, using
simulations in explicit water, that ordered states of generic amphiphilic
peptide sequences should be stabilized in cylindrical nanopores
Fast Neutron Detection with 6Li-loaded Liquid Scintillator
We report on the development of a fast neutron detector using a liquid
scintillator doped with enriched Li-6. The lithium was introduced in the form
of an aqueous LiCl micro-emulsion with a di-isopropylnaphthalene-based liquid
scintillator. A Li-6 concentration of 0.15 % by weight was obtained. A 125 mL
glass cell was filled with the scintillator and irradiated with fission-source
neutrons. Fast neutrons may produce recoil protons in the scintillator, and
those neutrons that thermalize within the detector volume can be captured on
the Li-6. The energy of the neutron may be determined by the light output from
recoiling protons, and the capture of the delayed thermal neutron reduces
background events. In this paper, we discuss the development of this 6Li-loaded
liquid scintillator, demonstrate the operation of it in a detector, and compare
its efficiency and capture lifetime with Monte Carlo simulations. Data from a
boron-loaded plastic scintillator were acquired for comparison. We also present
a pulse-shape discrimination method for differentiating between electronic and
nuclear recoil events based on the Matusita distance between a normalized
observed waveform and nuclear and electronic recoil template waveforms. The
details of the measurements are discussed along with specifics of the data
analysis and its comparison with the Monte Carlo simulation
Observation of hard scattering in photoproduction events with a large rapidity gap at HERA
Events with a large rapidity gap and total transverse energy greater than 5
GeV have been observed in quasi-real photoproduction at HERA with the ZEUS
detector. The distribution of these events as a function of the
centre of mass energy is consistent with diffractive scattering. For total
transverse energies above 12 GeV, the hadronic final states show predominantly
a two-jet structure with each jet having a transverse energy greater than 4
GeV. For the two-jet events, little energy flow is found outside the jets. This
observation is consistent with the hard scattering of a quasi-real photon with
a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
- …