7 research outputs found

    Effects of rapid prey evolution on predator-prey cycles

    Full text link
    We study the qualitative properties of population cycles in a predator-prey system where genetic variability allows contemporary rapid evolution of the prey. Previous numerical studies have found that prey evolution in response to changing predation risk can have major quantitative and qualitative effects on predator-prey cycles, including: (i) large increases in cycle period, (ii) changes in phase relations (so that predator and prey are cycling exactly out of phase, rather than the classical quarter-period phase lag), and (iii) "cryptic" cycles in which total prey density remains nearly constant while predator density and prey traits cycle. Here we focus on a chemostat model motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003] with algae (prey) and rotifers (predators), in which the prey exhibit rapid evolution in their level of defense against predation. We show that the effects of rapid prey evolution are robust and general, and furthermore that they occur in a specific but biologically relevant region of parameter space: when traits that greatly reduce predation risk are relatively cheap (in terms of reductions in other fitness components), when there is coexistence between the two prey types and the predator, and when the interaction between predators and undefended prey alone would produce cycles. Because defense has been shown to be inexpensive, even cost-free, in a number of systems [Andersson and Levin 1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be reproduced in other model systems, and in nature. Finally, some of our key results are extended to a general model in which functional forms for the predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure

    Efficacy, Toxicity, and Immunogenicity of Adenoviral Vectors

    No full text

    Cross-talk between tight and anchoring junctions-lesson from the testis

    No full text
    Spermatogenesis takes place in the seminiferous tubules in adult testes such as rats, in which developing germ cells must traverse the seminiferous epithelium while spermatogonia (2n, diploid) undergo mitotic and meiotic divisions, and differentiate into elongated spermatids (1n, haploid). It is conceivable that this event involves extensive junction restructuring particularly at the blood-testis barrier (BTB, a structure that segregates the seminiferous epithelium into the basal and the adluminal compartments) that occurs at stages VII-VIII of the seminiferous epithelial cycle. As such, cross-talk between tight (TJ) and anchoring junctions [e.g., basal ectoplasmic specialization (basal ES), adherens junction (AJ), desmosome-like junction (DJ)] at the BTB must occur to coordinate the transient opening of the BTB to facilitate preleptotene spermatocyte migration. Interestingly, while there are extensively restructuring at the BTB during the epithelial cycle, the immunological barrier function of the BTB must be maintained without disruption even transiently. Recent studies using the androgen suppression and Adjudin models have shown that anchoring junction restructuring that leads to germ cell loss from the seminiferous epithelium also promotes the production of AJ (e.g., basal ES) proteins (such as N-cadherins, catenins) at the BTB site. We postulate the testis is using a similar mechanism during spermatogenesis at stage VIII of the epithelial cycle that these induced basal ES proteins, likely form a "patch" surrounding the BTB, transiently maintain the BTB integrity while TJ is "opened", such as induced by TGF-b3 or TNFa, to facilitate preleptotene spermatocyte migration. However, in other stages of the epithelial cycle other than VII and VIII when the BTB remains "closed" (for ∼10 days), anchoring junctions (e.g., AJ, DJ, and apical ES) restructuring continues to facilitate germ cell movement. Interestingly, the mechanism(s) that governs this communication between TJ and anchoring junction (e.g., basal ES and AJ) in the testis has remained obscure until recently. Herein, we provide a critical review based on the recently available data regarding the cross-talk between TJ and anchoring junction to allow simultaneous maintenance of the BTB and germ cell movement across the seminiferous epithelium. © 2008 Landes Bioscience and Springer Science+Business Media.link_to_subscribed_fulltex

    Adenovector-Mediated Cancer Gene Therapy

    No full text
    corecore