16 research outputs found

    Modeling transport through single-molecule junctions

    Full text link
    Non-equilibrium Green's functions (NEGF) formalism combined with extended Huckel (EHT) and charging model are used to study electrical conduction through single-molecule junctions. Analyzed molecular complex is composed of asymmetric 1,4-Bis((2'-para-mercaptophenyl)-ethinyl)-2-acetyl-amino-5-nitro-benzene molecule symmetrically coupled to two gold electrodes [Reichert et al., Phys. Rev. Lett. Vol.88 (2002), pp. 176804]. Owing to this model, the accurate values of the current flowing through such junction can be obtained by utilizing basic fundamentals and coherently deriving model parameters. Furthermore, the influence of the charging effect on the transport characteristics is emphasized. In particular, charging-induced reduction of conductance gap, charging-induced rectification effect and charging-generated negative value of the second derivative of the current with respect to voltage are observed and examined for molecular complex.Comment: 8 pages, 3 figure

    The Role of Bound States in Time-Dependent Quantum Transport

    Full text link
    Charge transport through a nanoscale junction coupled to two macroscopic electrodes is investigated for the situation when bound states are present. We provide numerical evidence that bound states give rise to persistent, non-decaying current oscillations in the junction. We also show that the amplitude of these oscillations can exhibit a strong dependence on the history of the applied potential as well as on the initial equilibrium configuration. Our simulations allow for a quantitative investigation of several transient features. We also discuss the existence of different time-scales and address their microscopic origin.Comment: 10 pages, 8 figure
    corecore