7 research outputs found
Recommended from our members
Material inhomogeneities in Cd{sub 1{minus}x}Zn{sub x}Te and their effects on large volume gamma-ray detectors
Cadmium zinc telluride (Cd{sub 1{minus}x}Zn{sub x}Te or CZT) has shown great promise as a material for room-temperature x-ray and gamma-ray detectors. In particular, polycrystalline material grown by the High Pressure Bridgman method with nominal Zn fraction (x) from 0.1 to 0.2 has been used to fabricate high resolution gamma-ray spectrometers with resolution approaching that of cooled high-purity Ge. For increased sensitivity, large areas (> 1 cm{sup 2}) are required, and for good sensitivity to high energy gamma photons, thick detectors (on the order of 1 cm) are required. Thus there has been a push for the development of CZT detectors with a volume greater than 1 cm{sup 3}. However, nonuniformities in the material over this scale degrade the performance of the detectors. Variations in the zinc fraction, and thus the bandgap, and changes in the impurity distributions, both of which arise from the selective segregation of elements during crystal growth, result in spectral distortions. In this work several materials characterization techniques were combined with detector evaluations to determine the materials properties limiting detector performance. Materials measurements were performed on detectors found to have differing performance. Measurements conducted include infrared transmission (IR), particle induced x-ray emission (PIXE), photoluminescence (PL), and triaxial x-ray diffraction (TAXRD). To varying degrees, these measurements reveal that poor-performance detectors exhibit higher nonuniformities than spectrometer-grade detectors. This is reasonable, as regions of CZT material with different properties will give different localized spectral responses, which combine to result in a degraded spectrum for the total device
Recommended from our members
Multi-parameter high-resolution spatial maps of a CdZnTe radiation detector array
Resistivity results from a 48x48 pixelated CdZnTe (CZT) radiation detector array are presented alongside X-ray topography and detector mapping with a collimated gamma-ray beam. By using a variety of measurements performed on the same sample and registering each data set relative to the others, the spatial dependence of relationships between them was examined. The local correlations between resistivity and one measure of detector performance were strongly influenced by the positions of grain boundaries and other gross crystal defects in the sample. These measurements highlight the need for material studies of spatially heterogeneous CZT to record position information along with the parameters under study