110 research outputs found
INTEGRAL observations of TeV plerions
Amongst the sources seen in very high gamma-rays several are associated with
Pulsar Wind Nebulae (``TeV plerions''). The study of hard X-ray/soft gamma-ray
emission is providing an important insight into the energetic particle
population present in these objects. The unpulsed emission from pulsar/pulsar
wind nebula systems in the energy range accessible to the INTEGRAL satellite is
mainly synchrotron emission from energetic and fast cooling electrons close to
their acceleration site. Our analyses of public INTEGRAL data of known TeV
plerions detected by ground based Cherenkov telescopes indicate a deeper link
between these TeV plerions and INTEGRAL detected pulsar wind nebulae. The newly
discovered TeV plerion in the northern wing of the Kookaburra region
(G313.3+0.6 powered by the middle aged PSR J1420-6048) is found to have a
previously unknown INTEGRAL counterpart which is besides the Vela pulsar the
only middle aged pulsar detected with INTEGRAL. We do not find an INTEGRAL
counterpart of the TeV plerion associated with the X-ray PWN ``Rabbit''
G313.3+0.1 which is possibly powered by a young pulsar.Comment: 4 pages, 6 figures, proceedings of conference "The Multi-Messenger
Approach to High-Energy Gamma-ray Sources" Barcelona/Spain (2006
Microflares and the Statistics of X-ray Flares
This review surveys the statistics of solar X-ray flares, emphasising the new
views that RHESSI has given us of the weaker events (the microflares). The new
data reveal that these microflares strongly resemble more energetic events in
most respects; they occur solely within active regions and exhibit
high-temperature/nonthermal emissions in approximately the same proportion as
major events. We discuss the distributions of flare parameters (e.g., peak
flux) and how these parameters correlate, for instance via the Neupert effect.
We also highlight the systematic biases involved in intercomparing data
representing many decades of event magnitude. The intermittency of the
flare/microflare occurrence, both in space and in time, argues that these
discrete events do not explain general coronal heating, either in active
regions or in the quiet Sun.Comment: To be published in Space Science Reviews (2011
Physics with the KLOE-2 experiment at the upgraded DANE
Investigation at a --factory can shed light on several debated issues
in particle physics. We discuss: i) recent theoretical development and
experimental progress in kaon physics relevant for the Standard Model tests in
the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum
Mechanics from time evolution of entangled kaon states, iii) the interest for
improving on the present measurements of non-leptonic and radiative decays of
kaons and eta/eta mesons, iv) the contribution to understand the
nature of light scalar mesons, and v) the opportunity to search for narrow
di-lepton resonances suggested by recent models proposing a hidden dark-matter
sector. We also report on the physics in the continuum with the
measurements of (multi)hadronic cross sections and the study of gamma gamma
processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added
reference to section
Observation of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 with H.E.S.S. and MAGIC in May 2016
The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behavior, and is one of only a few FSRQs detected at very high energy (VHE, E >100 GeV) -rays. VHE -ray observations with H.E.S.S. and MAGIC during late May and early June 2016 resulted in the detection of an unprecedented flare, which reveals for the first time VHE -ray intranight variability in this source. While a common variability timescale of 1.5 hr is found, there is a significant deviation near the end of the flare with a timescale of ⌠20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, curvature is detected in the VHE -ray spectrum of PKS 1510-089, which is fully explained through absorption by the extragalactic background light. Optical R-band observations with ATOM reveal a counterpart of the -ray flare, even though the detailed flux evolution differs from the VHE lightcurve. Interestingly, a steep flux decrease is observed at the same time as the cessation of the VHE flare. In the high energy (HE, E >100 MeV) -ray band only a moderate flux increase is observed with Fermi-LAT, while the HE -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the -ray spectrum indicates that the emission region is located outside of the BLR. Radio VLBI observations reveal a fast moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located ⌠50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this correlation is indeed true, VHE rays have been produced far down the jet where turbulent plasma crosses a standing shock.Accepted manuscrip
- âŠ