110 research outputs found

    INTEGRAL observations of TeV plerions

    Full text link
    Amongst the sources seen in very high gamma-rays several are associated with Pulsar Wind Nebulae (``TeV plerions''). The study of hard X-ray/soft gamma-ray emission is providing an important insight into the energetic particle population present in these objects. The unpulsed emission from pulsar/pulsar wind nebula systems in the energy range accessible to the INTEGRAL satellite is mainly synchrotron emission from energetic and fast cooling electrons close to their acceleration site. Our analyses of public INTEGRAL data of known TeV plerions detected by ground based Cherenkov telescopes indicate a deeper link between these TeV plerions and INTEGRAL detected pulsar wind nebulae. The newly discovered TeV plerion in the northern wing of the Kookaburra region (G313.3+0.6 powered by the middle aged PSR J1420-6048) is found to have a previously unknown INTEGRAL counterpart which is besides the Vela pulsar the only middle aged pulsar detected with INTEGRAL. We do not find an INTEGRAL counterpart of the TeV plerion associated with the X-ray PWN ``Rabbit'' G313.3+0.1 which is possibly powered by a young pulsar.Comment: 4 pages, 6 figures, proceedings of conference "The Multi-Messenger Approach to High-Energy Gamma-ray Sources" Barcelona/Spain (2006

    Microflares and the Statistics of X-ray Flares

    Full text link
    This review surveys the statistics of solar X-ray flares, emphasising the new views that RHESSI has given us of the weaker events (the microflares). The new data reveal that these microflares strongly resemble more energetic events in most respects; they occur solely within active regions and exhibit high-temperature/nonthermal emissions in approximately the same proportion as major events. We discuss the distributions of flare parameters (e.g., peak flux) and how these parameters correlate, for instance via the Neupert effect. We also highlight the systematic biases involved in intercomparing data representing many decades of event magnitude. The intermittency of the flare/microflare occurrence, both in space and in time, argues that these discrete events do not explain general coronal heating, either in active regions or in the quiet Sun.Comment: To be published in Space Science Reviews (2011

    Physics with the KLOE-2 experiment at the upgraded DAϕ\phiNE

    Get PDF
    Investigation at a ϕ\phi--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/etaâ€Č^\prime mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e+e−e^+ e^- physics in the continuum with the measurements of (multi)hadronic cross sections and the study of gamma gamma processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added reference to section

    Observation of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 with H.E.S.S. and MAGIC in May 2016

    Get PDF
    The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behavior, and is one of only a few FSRQs detected at very high energy (VHE, E >100 GeV) -rays. VHE -ray observations with H.E.S.S. and MAGIC during late May and early June 2016 resulted in the detection of an unprecedented flare, which reveals for the first time VHE -ray intranight variability in this source. While a common variability timescale of 1.5 hr is found, there is a significant deviation near the end of the flare with a timescale of ∌ 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, curvature is detected in the VHE -ray spectrum of PKS 1510-089, which is fully explained through absorption by the extragalactic background light. Optical R-band observations with ATOM reveal a counterpart of the -ray flare, even though the detailed flux evolution differs from the VHE lightcurve. Interestingly, a steep flux decrease is observed at the same time as the cessation of the VHE flare. In the high energy (HE, E >100 MeV) -ray band only a moderate flux increase is observed with Fermi-LAT, while the HE -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the -ray spectrum indicates that the emission region is located outside of the BLR. Radio VLBI observations reveal a fast moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located ∌ 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this correlation is indeed true, VHE rays have been produced far down the jet where turbulent plasma crosses a standing shock.Accepted manuscrip
    • 

    corecore