1 research outputs found
Light-Front Quantisation as an Initial-Boundary Value Problem
In the light front quantisation scheme initial conditions are usually
provided on a single lightlike hyperplane. This, however, is insufficient to
yield a unique solution of the field equations. We investigate under which
additional conditions the problem of solving the field equations becomes well
posed. The consequences for quantisation are studied within a Hamiltonian
formulation by using the method of Faddeev and Jackiw for dealing with
first-order Lagrangians. For the prototype field theory of massive scalar
fields in 1+1 dimensions, we find that initial conditions for fixed light cone
time {\sl and} boundary conditions in the spatial variable are sufficient to
yield a consistent commutator algebra. Data on a second lightlike hyperplane
are not necessary. Hamiltonian and Euler-Lagrange equations of motion become
equivalent; the description of the dynamics remains canonical and simple. In
this way we justify the approach of discretised light cone quantisation.Comment: 26 pages (including figure), tex, figure in latex, TPR 93-