11 research outputs found
Large-scale structure of a nation-wide production network
Production in an economy is a set of firms' activities as suppliers and
customers; a firm buys goods from other firms, puts value added and sells
products to others in a giant network of production. Empirical study is lacking
despite the fact that the structure of the production network is important to
understand and make models for many aspects of dynamics in economy. We study a
nation-wide production network comprising a million firms and millions of
supplier-customer links by using recent statistical methods developed in
physics. We show in the empirical analysis scale-free degree distribution,
disassortativity, correlation of degree to firm-size, and community structure
having sectoral and regional modules. Since suppliers usually provide credit to
their customers, who supply it to theirs in turn, each link is actually a
creditor-debtor relationship. We also study chains of failures or bankruptcies
that take place along those links in the network, and corresponding
avalanche-size distribution.Comment: 17 pages with 8 figures; revised section VI and references adde
Model of community emergence in weighted social networks
Over the years network theory has proven to be rapidly expanding methodology to investigate various complex systems and it has turned out to give quite unparalleled insight to their structure, function, and response through data analysis, modeling, and simulation. For social systems in particular the network approach has empirically revealed a modular structure due to interplay between the network topology and link weights between network nodes or individuals. This inspired us to develop a simple network model that could catch some salient features of mesoscopic community and macroscopic topology formation during network evolution. Our model is based on two fundamental mechanisms of network sociology for individuals to find new friends, namely cyclic closure and focal closure, which are mimicked by local search-link-reinforcement and random global attachment mechanisms, respectively. In addition we included to the model a node deletion mechanism by removing all its links simultaneously, which corresponds for an individual to depart from the network. Here we describe in detail the implementation of our model algorithm, which was found to be computationally efficient and produce many empirically observed features of large-scale social networks. Thus this model opens a new perspective for studying such collective social phenomena as spreading, structure formation, and evolutionary processes