60 research outputs found

    Permeability and conductivity of platelet-reinforced membranes and composites

    Full text link
    We present large scale simulations of the diffusion constant DD of a random composite consisting of aligned platelets with aspect ratio a/b>>1a/b>>1 in a matrix (with diffusion constant D0D_0) and find that D/D0=1/(1+c1x+c2x2)D/D_0 = 1/(1+ c_1 x + c_2 x^2), where x=avf/bx= a v_f/b and vfv_f is the platelet volume fraction. We demonstrate that for large aspect ratio platelets the pair term (x2x^2) dominates suggesting large property enhancements for these materials. However a small amount of face-to-face ordering of the platelets markedly degrades the efficiency of platelet reinforcement.Comment: RevTeX, 5 pages, 4 figures, submitted to PR

    On the study of jamming percolation

    Full text link
    We investigate kinetically constrained models of glassy transitions, and determine which model characteristics are crucial in allowing a rigorous proof that such models have discontinuous transitions with faster than power law diverging length and time scales. The models we investigate have constraints similar to that of the knights model, introduced by Toninelli, Biroli, and Fisher (TBF), but differing neighbor relations. We find that such knights-like models, otherwise known as models of jamming percolation, need a ``No Parallel Crossing'' rule for the TBF proof of a glassy transition to be valid. Furthermore, most knight-like models fail a ``No Perpendicular Crossing'' requirement, and thus need modification to be made rigorous. We also show how the ``No Parallel Crossing'' requirement can be used to evaluate the provable glassiness of other correlated percolation models, by looking at models with more stable directions than the knights model. Finally, we show that the TBF proof does not generalize in any straightforward fashion for three-dimensional versions of the knights-like models.Comment: 13 pages, 18 figures; Spiral model does satisfy property

    On the freezing of variables in random constraint satisfaction problems

    Full text link
    The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.Comment: 32 pages, 7 figure

    Distributed flow optimization and cascading effects in weighted complex networks

    Full text link
    We investigate the effect of a specific edge weighting scheme ∼(kikj)β\sim (k_i k_j)^{\beta} on distributed flow efficiency and robustness to cascading failures in scale-free networks. In particular, we analyze a simple, yet fundamental distributed flow model: current flow in random resistor networks. By the tuning of control parameter β\beta and by considering two general cases of relative node processing capabilities as well as the effect of bandwidth, we show the dependence of transport efficiency upon the correlations between the topology and weights. By studying the severity of cascades for different control parameter β\beta, we find that network resilience to cascading overloads and network throughput is optimal for the same value of β\beta over the range of node capacities and available bandwidth

    Making a Greener Revolution: A Nutrient Delivery System for Food Production to Address Malnutrition through Crop Science

    No full text
    During the 1970s, the Green Revolution basically used dwarfing genes in wheat and rice that allowed greater water and fertilizer efficiency which dramatically increased the cereal productivity and thus, increased human caloric intake of the developing world. However, having met caloric intake, there is a need to address the issues of malnutrition through a holistic food production system. For example Ca-deficient induced rickets was found in 9% of children in SE Bangladesh, illustrating the failure of that food production system to address this vital nutrient, calcium. A clinical trial has shown a minimum of increase in calcium intake of 250 mg Ca per child per day was enough to prevent rickets. In Bangladesh, a consortium of universities and other medical institutions and the International Center for Wheat and Maize Improvement (CIMMYT) has developed strategies to infuse calcium within the food delivery system. For treatment of ricketic children, a strategy was developed to use live and video drama to create community awareness of the production and/or consumption of highcalicum crops/food and calcium supplement added to the cooking rice (in this case, highly edible CaCO3 readily available throughout the country). Though this represents a very specific case study, this is a useful example of how collaboration based around crop science can address the ‘hidden’ hunger of malnutrition throughout the world
    • …
    corecore