19 research outputs found
Spiral anchoring in anisotropic media with multiple inhomogeneities: a dynamical system approach
Various PDE models have been suggested in order to explain and predict the
dynamics of spiral waves in excitable media. In two landmark papers, Barkley
noticed that some of the behaviour could be explained by the inherent Euclidean
symmetry of these models. LeBlanc and Wulff then introduced forced Euclidean
symmetry-breaking (FESB) to the analysis, in the form of individual
translational symmetry-breaking (TSB) perturbations and rotational
symmetry-breaking (RSB) perturbations; in either case, it is shown that spiral
anchoring is a direct consequence of the FESB.
In this article, we provide a characterization of spiral anchoring when two
perturbations, a TSB term and a RSB term, are combined, where the TSB term is
centered at the origin and the RSB term preserves rotations by multiples of
, where is an integer. When
(such as in a modified bidomain model), it is shown that spirals
anchor at the origin, but when (such as in a planar
reaction-diffusion-advection system), spirals generically anchor away from the
origin.Comment: Revised versio
Primordial Nucleosynthesis for the New Cosmology: Determining Uncertainties and Examining Concordance
Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) have
a long history together in the standard cosmology. The general concordance
between the predicted and observed light element abundances provides a direct
probe of the universal baryon density. Recent CMB anisotropy measurements,
particularly the observations performed by the WMAP satellite, examine this
concordance by independently measuring the cosmic baryon density. Key to this
test of concordance is a quantitative understanding of the uncertainties in the
BBN light element abundance predictions. These uncertainties are dominated by
systematic errors in nuclear cross sections. We critically analyze the cross
section data, producing representations that describe this data and its
uncertainties, taking into account the correlations among data, and explicitly
treating the systematic errors between data sets. Using these updated nuclear
inputs, we compute the new BBN abundance predictions, and quantitatively
examine their concordance with observations. Depending on what deuterium
observations are adopted, one gets the following constraints on the baryon
density: OmegaBh^2=0.0229\pm0.0013 or OmegaBh^2 = 0.0216^{+0.0020}_{-0.0021} at
68% confidence, fixing N_{\nu,eff}=3.0. Concerns over systematics in helium and
lithium observations limit the confidence constraints based on this data
provide. With new nuclear cross section data, light element abundance
observations and the ever increasing resolution of the CMB anisotropy, tighter
constraints can be placed on nuclear and particle astrophysics. ABRIDGEDComment: 54 pages, 20 figures, 5 tables v2: reflects PRD version minor changes
to text and reference