15 research outputs found

    Illuminating silicon surface hydrosilylation: An unexpected plurality of mechanisms

    No full text
    Silicon is the cornerstone material of the semiconductor industry. As feature sizes on chips continue to decrease in size, the ratio of surface to bulk increases, and as a result, the role of surface defects, surface states and other subtle features play larger roles in the functioning of the device. Although silicon oxides have served the industry well as the passivation chemistry of choice, there is interest in expanding the repertoire of accessible and efficient chemical functional strategies available for use, and to fully understand the nature of these interfaces. For new applications such as molecular electronics on silicon and biochips, for example, there is a need to avoid the layer of intervening insulating oxide: A well-defined linkage of organic molecules through a silicon-carbon bond has great promise and appeal. Hydrosilylation, the insertion of an alkene or alkyne into a surface Si-H bond, is an ideal approach to producing these covalent Si-C bonds, and can be carried out in a number of ways. Light-promoted hydrosilylation is promising because it is clean and direct and can be patterned via masking; it requires no additional reagents such as catalysts or input of thermal energy and thus may have reduced surface contamination and numbers of defects. In this perspective, we start by making connections between the molecular silane literature, and the first reports of UV-mediated hydrosilylation of an alkene on a silicon surface, a reaction that was assumed to operate via a radical mechanism. We then describe the unexpected development of four new mechanisms that have no obvious parallels with the molecular silane literature, and take place as a result of the solid state electronics of the underlying silicon itself. From exciton involvement, to the influence of plasmonics, to the role of photoemission, the area of silicon surface hydrosilylation has become incredibly rich, and undoubtedly still contains new reactivity to be discovered. \ua9 2013 American Chemical Society.Peer reviewed: YesNRC publication: Ye

    Reporting performance in organic photovoltaic devices

    No full text
    Research into organic photovoltaics (OPVs) is rapidly growing worldwide because it offers a route to low temperature, inexpensive processing of lightweight, flexible solar cells that can be mass manufactured cheaply. Unlike silicon or other inorganic semiconductors (e.g., CdTe, CIGs), OPVs are complicated by the requirement of having multiple materials and layers that must be integrated to enable the cell to function. The enormous number of research hours required to optimize all aspects of OPVs and to integrate them successfully is typically boiled down to one number-the power conversion efficiency (PCE) of the device. The PCE is the value by which comparisons are routinely made when modifications are made to devices; new bulk heterojunction materials, electron- and hole-transport layers, electrodes, plasmonic additives, and many other new advances are incorporated into OPV devices and compared with one, or a series of, control device(s). The concern relates to the statistical significance of this all-important efficiency/PCE value: is the observed change or improvement in performance truly greater than experimental error? If it is not, then the field can and will be misled by improper reporting of efficiencies, and future research in OPVs could be frustrated and, ultimately, irreversibly damaged. In this Perspective, the dangers of, for instance, cherry-picking of data and poor descriptions of experimental procedures, are outlined, followed by a discussion of a real data set of OPV devices, and how a simple and easy statistical treatment can help to distinguish between results that are indistinguishable experimentally, and those that do appear to be different. \ua9 2013 American Chemical Society.Peer reviewed: YesNRC publication: Ye

    Conversion of bilayers of PS-b-PDMS block copolymer into closely packed, aligned silica nanopatterns

    No full text
    Block copolymer (BCP) self-assembly is an effective and versatile approach for the production of complex nanopatterned interfaces. Monolayers of BCP films can be harnessed to produce a variety of different patterns, including lines, with specific spacings and order. In this work, bilayers of cylinder-forming polystyrene-block-polydimethylsiloxane block copolymer (PS-b-PDMS) were transformed into arrays of silica lines with half the pitch normally attained for conventional monolayers, with the PDMS acting as the source for the SiO x. The primary hurdle was ensuring the bilayer silica lines were distinctly separate; to attain the control necessary to prevent overlap, a number of variables related to the materials and self-assembly process were investigated in detail. Developing a detailed understanding of BCP film swelling during solvent annealing, blending of the PS-b-PDMS with PS homopolymer, utilization of a surface brush layer, and adjustment of the plasma exposure conditions, distinct and separate silica lines were prepared. On the microscale, the sample coverage of PS-b-PDMS bilayers was investigated and maximized to attain >95% bilayers under defined conditions. The bilayer BCP structures were also amenable to graphoepitaxy, and thus, dense and highly ordered arrays of silica line patterns with tightly controlled width and pitch were fabricated and distributed uniformly across a Si surface. \ua9 2013 American Chemical Society.Peer reviewed: YesNRC publication: Ye

    Rolling silver nanowire electrodes: Simultaneously addressing adhesion, roughness, and conductivity

    No full text
    Silver nanowire mesh electrodes represent a possible mass-manufacturable route toward transparent and flexible electrodes for plastic-based electronics such as organic photovoltaics (OPVs), organic light emitting diodes (OLEDs), and others. Here we describe a route that is based upon spray-coated silver nanowire meshes on polyethylene terephthalate (PET) sheets that are treated with a straightforward combination of heat and pressure to generate electrodes that have low sheet resistance, good optical transmission, that are topologically flat, and adhere well to the PET substrate. The silver nanowire meshes were prepared by spray-coating a solution of silver nanowires onto PET, in air at slightly elevated temperatures. The as-prepared silver nanowire electrodes are highly resistive due to the poor contact between the individual silver nanowires. Light pressure applied with a stainless steel rod, rolled over the as-sprayed silver nanowire meshes on PET with a speed of 10 cm s-1 and a pressure of 50 psi, results in silver nanowire mesh arrays with sheet resistances of less than 20 \u3a9/\u25a1. Bending of these rolled nanowire meshes on PET with different radii of curvature, from 50 to 0.625 mm, showed no degradation of the conductivity of the electrodes, as shown by the constant sheet resistance before and after bending. Repeated bending (100 times) around a rod with a radius of curvature of 1 mm also showed no increase in the sheet resistance, demonstrating good adherence and no signs of delamination of the nanowire mesh array. The diffuse and direct transmittance of the silver nanowires (both rolled and as-sprayed) was measured for wavelengths from 350 to 1200 nm, and the diffuse transmission was similar to that of the PET substrate; the direct transmission decreases by about 7-8%. The silver nanowires were then incorporated into OPV devices with the following architecture: transparent electrode/PEDOT:PSS/P3HT:PC61BM/LiF/Al. While slightly lower in efficiency than the standard indium tin oxide substrate (ITO), the rolled silver nanowire electrodes had a very good device yield, showing that short circuits resulting from the silver nanowire electrodes can be successfully avoided by this rolling approach. \ua9 2013 American Chemical Society.Peer reviewed: YesNRC publication: Ye

    Deconvoluting the mechanism of microwave annealing of block copolymer thin films

    No full text
    The self-assembly of block copolymer (BCP) thin films is a versatile method for producing periodic nanoscale patterns with a variety of shapes. The key to attaining a desired pattern or structure is the annealing step undertaken to facilitate the reorganization of nanoscale phase-segregated domains of the BCP on a surface. Annealing BCPs on silicon substrates using a microwave oven has been shown to be very fast (seconds to minutes), both with and without contributions from solvent vapor. The mechanism of the microwave annealing process remains, however, unclear. This work endeavors to uncover the key steps that take place during microwave annealing, which enable the self-assembly process to proceed. Through the use of in situ temperature monitoring with a fiber optic temperature probe in direct contact with the sample, we have demonstrated that the silicon substrate on which the BCP film is cast is the dominant source of heating if the doping of the silicon wafer is sufficiently low. Surface temperatures as high as 240\ub0C are reached in under 1 min for lightly doped, high resistivity silicon wafers (n- or p-type). The influence of doping, sample size, and BCP composition was analyzed to rule out other possible mechanisms. In situ temperature monitoring of various polymer samples (PS, P2VP, PMMA, and the BCPs used here) showed that the polymers do not heat to any significant extent on their own with microwave irradiation of this frequency (2.45 GHz) and power ( 3c600 W). It was demonstrated that BCP annealing can be effectively carried out in 60 s on non-microwave-responsive substrates, such as highly doped silicon, indium tin oxide (ITO)-coated glass, glass, and Kapton, by placing a piece of high resistivity silicon wafer in contact with the sample-in this configuration, the silicon wafer is termed the heating element. Annealing and self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) BCPs into horizontal cylinder structures were shown to take place in under 1 min, using a silicon wafer heating element, in a household microwave oven. Defect densities were calculated and were shown to decrease with higher maximum obtained temperatures. Conflicting results in the literature regarding BCP annealing with microwave are explained in light of the results obtained in this study. \ua9 Published 2014 by the American Chemical Society.Peer reviewed: YesNRC publication: Ye

    Rapid assembly of nanolines with precisely controlled spacing from binary blends of block copolymers

    No full text
    Thin films cast from binary blends of structurally homologous polystyrene-block-poly(2-vinylpyridine) polymers were used to obtain horizontal arrays of linear nanostructures which were visualized by metallizing the poly(2-vinylpyridine) blocks with a tetrachloroplatinate salt. By varying the blend compositions of the homologous block copolymers, fine control over the periodicity of lines was realized from 3c25 to 55 nm using a set of just 4 block copolymers. For neat block copolymers whose equilibrium structures are not horizontal cylinders, blending enabled cylindrical structures to form. The ordering in various films was studied by measurements of defect density, and it was found that in many cases blended films produced patterns of lower defect density than patterns formed from single component block copolymers. Annealing of the polymer films was carried out using a solvothermal microwave annealing technique able to rapidly produce few-defect films. Here the technique is adapted to use a household microwave oven (cost < $100) to rapidly induce self-assembly in under 2 min, enabling broad accessibility. \ua9 2011 American Chemical Society.Peer reviewed: YesNRC publication: Ye

    Phase-pure crystalline zinc phosphide nanoparticles: Synthetic approaches and characterization

    No full text
    Zinc phosphide may have potential for photovoltaic applications due to its high absorptivity of visible light and the earth abundance of its constituent elements. Two different solution-phase synthetic strategies for phase-pure and crystalline Zn3P2 nanoparticles ( 3c3-15 nm) are described here using dimethylzinc and vary with phosphorus source. Use of tri-n-octylphosphine (TOP) with ZnMe2 takes place at high temperatures ( 3c350 C) and appears to proceed via rapid in situ reduction to Zn(0), followed by subsequent reaction with TOP over a period of several hours to produce Zn3P2 nanoparticles. Some degree of control over size was obtained through variance of the TOP concentration in solution; the average size of the particles decreases with increasing TOP concentration. With the more reactive phosphine, P(SiMe3)3, lower temperatures, 3c150 C, and shorter reaction times (1 h) are required. When P(SiMe3)3 is used, the reaction mechanism most likely proceeds via phosphido-bridged dimeric Zn(II) intermediates, and not metallic zinc species, as is the case with TOP. In all cases, the nanoparticles were characterized by a combination of X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and solution and solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) analyses. Surface investigation through a combination of MAS 31P NMR and XPS analyses suggests that the particles synthesized with TOP at 350 C possess a core-shell structure consisting of a crystalline Zn3P 2 core and an amorphous P(0)-rich shell. Conversely, the ligand and phosphorus sources are decoupled in the P(SiMe3)3 synthesis, resulting in significantly reduced P(0) formation. \ua9 2014 American Chemical Society.Peer reviewed: YesNRC publication: Ye

    Indium tin oxide nanopillar electrodes in polymer/fullerene solar cells

    No full text
    Using high surface area nanostructured electrodes in organic photovoltaic (OPV) devices is a route to enhanced power conversion efficiency. In this paper, indium tin oxide (ITO) and hybrid ITO/SiO2 nanopillars are employed as three-dimensional high surface area transparent electrodes in OPVs. The nanopillar arrays are fabricated via glancing angle deposition (GLAD) and electrochemically modified with nanofibrous PEDOT:PSS (poly(3,4- ethylenedioxythiophene):poly(p-styrenesulfonate)). The structures are found to have increased surface area as characterized by porosimetry. When applied as anodes in polymer/fullerene OPVs (architecture: commercial ITO/GLAD ITO/PEDOT:PSS/P3HT:PCBM/Al, where P3HT is 2,5-diyl-poly(3-hexylthiophene) and PCBM is [6,6]-phenyl-C61-butyric acid methyl ester), the air-processed solar cells incorporating high surface area, PEDOT:PSS-modified ITO nanoelectrode arrays operate with improved performance relative to devices processed identically on unstructured, commercial ITO substrates. The resulting power conversion efficiency is 2.2% which is a third greater than for devices prepared on commercial ITO. To further refine the structure, insulating SiO 2 caps are added above the GLAD ITO nanopillars to produce a hybrid ITO/SiO2 nanoelectrode. OPV devices based on this system show reduced electrical shorting and series resistance, and as a consequence, a further improved power conversion efficiency of 2.5% is recorded. \ua9 2011 IOP Publishing Ltd.Peer reviewed: YesNRC publication: Ye
    corecore