2,409 research outputs found
Bosonization of the Low Energy Excitations of Fermi Liquids
We bosonize the low energy excitations of Fermi Liquids in any number of
dimensions in the limit of long wavelengths. The bosons are coherent
superposition of electron-hole pairs and are related with the displacement of
the Fermi Surface in some arbitrary direction. A coherent-state path integral
for the bosonized theory is derived and it is shown to represent histories of
the shape of the Fermi Surface. The Landau equation for the sound waves is
shown to be exact in the semiclassical approximation for the bosons.Comment: 10 pages, RevteX, P-93-03-027 (UIUC
Order of Two-Dimensional Isotropic Dipolar Antiferromagnets
The question of the existence of order in two-dimensional isotropic dipolar
Heisenberg antiferromagnets is studied. It is shown that the dipolar
interaction leads to a gap in the spin-wave energy and a nonvanishing order
parameter. The resulting finite N\'eel-temperature is calculated for a square
lattice by means of linear spin-wave theory.Comment: 10 pages, REVTEX, 1 figure available upon request, TUM-CP-93-0
Proof of an entropy conjecture for Bloch coherent spin states and its generalizations
Wehrl used Glauber coherent states to define a map from quantum density
matrices to classical phase space densities and conjectured that for Glauber
coherent states the mininimum classical entropy would occur for density
matrices equal to projectors onto coherent states. This was proved by Lieb in
1978 who also extended the conjecture to Bloch SU(2) spin-coherent states for
every angular momentum . This conjecture is proved here. We also recall our
1991 extension of the Wehrl map to a quantum channel from to , with corresponding to the Wehrl map to classical densities.
For each and we show that the minimal output entropy for
these channels occurs for a coherent state. We also show that coherent
states both Glauber and Bloch minimize any concave functional, not just
entropy.Comment: Version 2 only minor change
Control of an atom laser using feedback
A generalised method of using feedback to control Bose-Einstein condensates
is introduced. The condensates are modelled by the Gross-Pitaevskii equation,
so only semiclassical fluctations can be suppressed, and back-action from the
measurement is ignored. We show that for any available control, a feedback
scheme can be found to reduce the energy while the appropriate moment is still
dynamic. We demonstrate these schemes by considering a condensate trapped in a
harmonic potential that can be modulated in strength and position. The
formalism of our feedback scheme also allows the inclusion of certain types of
non-linear controls. If the non-linear interaction between the atoms can be
controlled via a Feshbach resonance, we show that the feedback process can
operate with a much higher efficiency.Comment: 6 pages, 7 figure
Optimal path planning for nonholonomic robotics systems via parametric optimisation
Abstract. Motivated by the path planning problem for robotic systems this paper considers nonholonomic path planning on the Euclidean group of motions SE(n) which describes a rigid bodies path in n-dimensional Euclidean space. The problem is formulated as a constrained optimal kinematic control problem where the cost function to be minimised is a quadratic function of translational and angular velocity inputs. An application of the Maximum Principle of optimal control leads to a set of Hamiltonian vector field that define the necessary conditions for optimality and consequently the optimal velocity history of the trajectory. It is illustrated that the systems are always integrable when n = 2 and in some cases when n = 3. However, if they are not integrable in the most general form of the cost function they can be rendered integrable by considering special cases. This implies that it is possible to reduce the kinematic system to a class of curves defined analytically. If the optimal motions can be expressed analytically in closed form then the path planning problem is reduced to one of parameter optimisation where the parameters are optimised to match prescribed boundary conditions.This reduction procedure is illustrated for a simple wheeled robot with a sliding constraint and a conventional slender underwater vehicle whose velocity in the lateral directions are constrained due to viscous damping
Moving constraints as stabilizing controls in classical mechanics
The paper analyzes a Lagrangian system which is controlled by directly
assigning some of the coordinates as functions of time, by means of
frictionless constraints. In a natural system of coordinates, the equations of
motions contain terms which are linear or quadratic w.r.t.time derivatives of
the control functions. After reviewing the basic equations, we explain the
significance of the quadratic terms, related to geodesics orthogonal to a given
foliation. We then study the problem of stabilization of the system to a given
point, by means of oscillating controls. This problem is first reduced to the
weak stability for a related convex-valued differential inclusion, then studied
by Lyapunov functions methods. In the last sections, we illustrate the results
by means of various mechanical examples.Comment: 52 pages, 4 figure
A dynamical gluon mass solution in a coupled system of the Schwinger-Dyson equations
We study numerically the Schwinger-Dyson equations for the coupled system of
gluon and ghost propagators in the Landau gauge and in the case of pure gauge
QCD. We show that a dynamical mass for the gluon propagator arises as a
solution while the ghost propagator develops an enhanced behavior in the
infrared regime of QCD. Simple analytical expressions are proposed for the
propagators, and the mass dependency on the scale and its
perturbative scaling are studied. We discuss the implications of our results
for the infrared behavior of the coupling constant, which, according to fits
for the propagators infrared behavior, seems to indicate that as .Comment: 17 pages, 7 figures - Revised version to be consistent with erratum
to appear in JHE
Geometric aspects of nonholonomic field theories
A geometric model for nonholonomic Lagrangian field theory is studied. The
multisymplectic approach to such a theory as well as the corresponding Cauchy
formalism are discussed. It is shown that in both formulations, the relevant
equations for the constrained system can be recovered by a suitable projection
of the equations for the underlying free (i.e. unconstrained) Lagrangian
system.Comment: 29 pages; typos remove
Does femtosecond time-resolved second-harmonic generation probe electron temperatures at surfaces?
Femtosecond pump-probe second-harmonic generation (SHG) and transient linear
reflectivity measurements were carried out on polycrystalline Cu, Ag and Au in
air to analyze whether the electron temperature affects Fresnel factors or
nonlinear susceptibilities, or both. Sensitivity to electron temperatures was
attained by using photon energies near the interband transition threshold. We
find that the nonlinear susceptibility carries the electron temperature
dependence in case of Ag and Au, while for Cu the dependence is in the Fresnel
factors. This contrasting behavior emphasizes that SHG is not a priori
sensitive to electron dynamics at surfaces or interfaces, notwithstanding its
cause.Comment: 11 pages, 4 figure
Genome-wide DNA methylation detection by MethylCap-seq and Infinium HumanMethylation450 BeadChips: an independent large-scale comparison.
Two cost-efficient genome-scale methodologies to assess DNA-methylation are MethylCap-seq and Illumina's Infinium HumanMethylation450 BeadChips (HM450). Objective information regarding the best-suited methodology for a specific research question is scant. Therefore, we performed a large-scale evaluation on a set of 70 brain tissue samples, i.e. 65 glioblastoma and 5 non-tumoral tissues. As MethylCap-seq coverages were limited, we focused on the inherent capacity of the methodology to detect methylated loci rather than a quantitative analysis. MethylCap-seq and HM450 data were dichotomized and performances were compared using a gold standard free Bayesian modelling procedure. While conditional specificity was adequate for both approaches, conditional sensitivity was systematically higher for HM450. In addition, genome-wide characteristics were compared, revealing that HM450 probes identified substantially fewer regions compared to MethylCap-seq. Although results indicated that the latter method can detect more potentially relevant DNA-methylation, this did not translate into the discovery of more differentially methylated loci between tumours and controls compared to HM450. Our results therefore indicate that both methodologies are complementary, with a higher sensitivity for HM450 and a far larger genome-wide coverage for MethylCap-seq, but also that a more comprehensive character does not automatically imply more significant results in biomarker studies
- âŠ