130 research outputs found
Projections of air pollutant emissions and its impacts on regional air quality in China in 2020
Anthropogenic emissions of air pollutants in China influence not only local and regional environments but also the global atmospheric environment; therefore, it is important to understand how China's air pollutant emissions will change and how they will affect regional air quality in the future. Emission scenarios in 2020 were projected using forecasts of energy consumption and emission control strategies based on emissions in 2005, and on recent development plans for key industries in China. We developed four emission scenarios: REF[0] (current control legislations and implementation status), PC[0] (improvement of energy efficiencies and current environmental legislation), PC[1] (improvement of energy efficiencies and better implementation of environmental legislation), and PC[2] (improvement of energy efficiencies and strict environmental legislation). Under the REF[0] scenario, the emission of SO2, NOx, VOC and NH3 will increase by 17%, 50%, 49% and 18% in 2020, while PM10 emissions will be reduced by 10% over East China, compared to that in 2005. In PC[2], sustainable energy polices will reduce SO2, NOx and PM10 emissions by 4.1 Tg, 2.6 Tg and 1.8 Tg, respectively; better implementation of current control policies will reduce SO2, NOx and PM10 emission by 2.9 Tg, 1.8 Tg, and 1.4 Tg, respectively; strict emission standards will reduce SO2, NOx and PM10 emissions by 3.2 Tg, 3.9 Tg, and 1.7 Tg, respectively. Under the PC[2] scenario, SO2 and PM10 emissions will decrease by 18% and 38%, while NOx and VOC emissions will increase by 3% and 8%, compared to that in 2005. Future air quality in China was simulated using the Community Multi-scale Air Quality Model (CMAQ). Under RE[0] emissions, compared to 2005, the surface concentrations of SO2, NO2, hourly maximum ozone in summer, PM2.5, total sulfur and nitrogen depositions will increase by 28%, 41%, 8%, 8%, 19% and 25%, respectively, over east China. Under the PC[2] emission scenario, the surface concentrations of SO2, M2.5, total sulfur depositions will decrease by 18%, 16% and 15%, respectively, and the surface concentrations of NO2, nitrate, hourly maximum ozone in summer, total nitrogen depositions will be kept as 2005 level, over east China. The individual impacts of SO2, NOx, NH3, NMVOC and primary PM emission changes on ozone and PM.5 concentrations have been analyzed using sensitivity analysis. The results suggest that NOx emission control need to be enhanced during the summertime to obtain both ozone and PM2.5 reduction benefits. NH3 emission controls should also be considered in order to reduce both nitrate concentration and total nitrogen deposition in the future
Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation
Although defects in intestinal barrier function are discussed as a key pathogenic factor in patients with inflammatory bowel diseases (IBD), the molecular pathways driving disease-specific alterations of intestinal epithelial cells (IECs) are largely unknown. Here, we performed a novel approach to characterize the transcriptome of IECs from IBD patients using a genome wide approach. We observed disease-specific alterations in IECs with markedly impaired Rho-A signaling in active IBD patients. Localization of epithelial Rho-A was shifted to the cytosol in IBD where Rho-A activation was suppressed due to reduced expression of the Rho-A prenylation enzyme GGTase-I. The functional relevance of this pathway was highlighted by studies in mice with conditional gene targeting in which deletion of RhoA or GGTase-I in IECs caused spontaneous chronic intestinal inflammation with accumulation of granulocytes and CD4+ T cells. This phenotype was associated with cytoskeleton rearrangement and aberrant cell shedding ultimately leading to loss of epithelial integrity and subsequent inflammation. These findings uncover deficient prenylation of Rho-A as a key player in the pathogenesis of IBD. As therapeutic triggering of Rho-A signaling suppressed intestinal inflammation in mice with GGTase-I deficient IECs, our findings open new avenues for treatment of epithelial injury and mucosal inflammation in IBD patients
NOx emissions in China: Historical trends and future perspectives
Nitrogen oxides (NOx) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995-2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4%, 34.0%, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64% and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector, and more than half is distributed equally between industry and transportation sectors. Selective catalytic reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy-duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020 and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to explore the impact of key factors on future emissions
Molecular assessment of complex microbial communities degrading long chain fatty acids in methanogenic bioreactors
Microbial diversity of anaerobic sludge after extended contact with long chain fatty
acids (LCFA) was studied using molecular approaches. Samples containing high
amounts of accumulated LCFA were obtained after continuous loading of two
bioreactors with oleate or with palmitate. These sludge samples were then
incubated in batch assays to allow degradation of the biomass-associated LCFA.
In addition, sludge used as inoculum for the reactors was also characterized.
Predominant phylotypes of the different samples were monitored using denaturing
gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments.
Fingerprinting analysis showed changes in bacterial and archaeal communities
during LCFA accumulation and degradation. Full-length 16S rRNA gene sequences
of 22 clones, representing the predominant bacteria and archaea, were determined.
Most bacterial clones (80%) clustered within the Clostridiaceae. Two major groups
of methanogens were identified: hydrogen- and formate-utilizing organisms,
closely related to Methanobacterium, and acetoclastic organisms closely related to
Methanosaeta and Methanosarcina. Quantification by FISH and real-time PCR
showed that the relative abundance of archaea increased during degradation of
biomass-accumulated LCFA. These results provide insight into the importance and
dynamics of balanced communities of bacteria and methanogens in LCFAaccumulation/
degradation cycles.Fundação para a Ciência e a Tecnologia (FCT); Fundo Social Europeu (FSE)
Impact of 3 Tesla MRI on interobserver agreement in clinically isolated syndrome : A MAGNIMS multicentre study
The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This research has been supported by a programme grant (14-358e) from the Dutch MS Research Foundation (Voorschoten, The Netherlands). The study in London was supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre.Background: Compared to 1.5 T, 3 T magnetic resonance imaging (MRI) increases signal-to-noise ratio leading to improved image quality. However, its clinical relevance in clinically isolated syndrome suggestive of multiple sclerosis remains uncertain. Objectives: The purpose of this study was to investigate how 3 T MRI affects the agreement between raters on lesion detection and diagnosis. Methods: We selected 30 patients and 10 healthy controls from our ongoing prospective multicentre cohort. All subjects received baseline 1.5 and 3 T brain and spinal cord MRI. Patients also received follow-up brain MRI at 3-6 months. Four experienced neuroradiologists and four less-experienced raters scored the number of lesions per anatomical region and determined dissemination in space and time (McDonald 2010). Results: In controls, the mean number of lesions per rater was 0.16 at 1.5 T and 0.38 at 3 T (p = 0.005). For patients, this was 4.18 and 4.40, respectively (p = 0.657). Inter-rater agreement on involvement per anatomical region and dissemination in space and time was moderate to good for both field strengths. 3 T slightly improved agreement between experienced raters, but slightly decreased agreement between less-experienced raters. Conclusion: Overall, the interobserver agreement was moderate to good. 3 T appears to improve the reading for experienced readers, underlining the benefit of additional training
Classical Yang-Mills Black hole hair in anti-de Sitter space
The properties of hairy black holes in Einstein–Yang–Mills (EYM) theory are reviewed, focusing on spherically symmetric solutions. In particular, in asymptotically anti-de Sitter space (adS) stable black hole hair is known to exist for frak su(2) EYM. We review recent work in which it is shown that stable hair also exists in frak su(N) EYM for arbitrary N, so that there is no upper limit on how much stable hair a black hole in adS can possess
Recommended from our members
The micromorphology of glaciolacustrine varve sediments and their use for reconstructing palaeoglaciological and palaeoenvironmental change
Former glaciolacustrine systems are an important archive of palaeoglaciological, palaeoenvironmental and palaeoclimatic change. The annually laminated (varved) sediments that, under certain conditions, accumulate in former glacial lakes, offer a rare opportunity to reconstruct such changes (e.g. glacier advance and retreat cycles, glacier ablation trends, permafrost melt, nival events) at annual or even sub-annual temporal resolution. Data of this kind are desirable for their ability to guide and test numerical model simulations of glacier dynamics and palaeoclimatic change that occur over rapid time intervals, with implications for predicting future glacier response to climatic change, or the effects of weather and climate events on lake sedimentation. The most valuable records preserved in glaciolacustrine systems are continuous varved sequences formed in the distal parts of glacial lakes, where microscale lamination structures can accumulate relatively undisturbed. Technological advances, in the last few decades, have enabled improved characterisation of glaciolacustrine varve microfacies and the precise measurement of varve thickness at the micrometre scale. However, unlike in cognate fields (e.g. soil science), protocols for the robust and consistent description and interpretation of glaciolacustrine varve sediments are lacking. To fill this gap, and to provide a resource for future studies of glaciolacustrine varved sediments, this paper reviews the processes of sedimentation in glacial lake basins, and presents the defining microfacies characteristics of glacial varves using a descriptive protocol that uses consistent examination of grain size, sorting, structure, nature of contacts, development of plasmic fabrics and features such as dropgrains and intraclasts within individual laminations. These lamination types are then combined into lamination sets, whose structures can be interpreted as glaciolacustrine varves. Within this framework, we define five principal assemblages of glaciolacustrine varve microfacies which, if clearly identified in palaeoglaciolacustrine settings, enable more detailed palaeoenvironmental interpretations to be made. Finally, we discuss the utility and complexities of reconstructing the evolution of former glacial lake systems using varve microfacies and thickness datasets
Exploring interactions of plant microbiomes
A plethora of microbial cells is present in every gram of soil, and microbes are found extensively in plant and animal tissues. The mechanisms governed by microorganisms in the regulation of physiological processes of their hosts have been extensively studied in the light of recent findings on microbiomes. In plants, the components of these microbiomes may form distinct communities, such as those inhabiting the plant rhizosphere, the endosphere and the phyllosphere. In each of these niches, the "microbial tissue" is established by, and responds to, specific selective pressures. Although there is no clear picture of the overall role of the plant microbiome, there is substantial evidence that these communities are involved in disease control, enhance nutrient acquisition, and affect stress tolerance. In this review, we first summarize features of microbial communities that compose the plant microbiome and further present a series of studies describing the underpinning factors that shape the phylogenetic and functional plant-associated communities. We advocate the idea that understanding the mechanisms by which plants select and interact with their microbiomes may have a direct effect on plant development and health, and further lead to the establishment of novel microbiome-driven strategies, that can cope with the development of a more sustainable agriculture
- …