382 research outputs found
Bose-Einstein condensation of excitons in CuO
We present a parameter-free model which estimates the density of excitons in
CuO, related to experiments that have tried to create an excitonic
Bose-Einstein condensate. Our study demonstrates that the triplet-state
excitons move along adiabats and obey classical statistics, while the
singlet-state excitons are a possible candidate for forming a Bose-Einstein
condensate. Finally we show that the results of this study do not change
qualitatively in a two-dimensional exciton gas, which can be realized in a
quantum well.Comment: 6 pages, RevTex, 1 ps figur
Constrained Willmore Surfaces
Constrained Willmore surfaces are conformal immersions of Riemann surfaces
that are critical points of the Willmore energy under compactly
supported infinitesimal conformal variations. Examples include all constant
mean curvature surfaces in space forms. In this paper we investigate more
generally the critical points of arbitrary geometric functionals on the space
of immersions under the constraint that the admissible variations
infinitesimally preserve the conformal structure. Besides constrained Willmore
surfaces we discuss in some detail examples of constrained minimal and volume
critical surfaces, the critical points of the area and enclosed volume
functional under the conformal constraint.Comment: 17 pages, 8 figures; v2: Hopf tori added as an example, minor changes
in presentation, numbering changed; v3: new abstract and appendix, several
changes in presentatio
Molecular vibration in cold collision theory
Cold collisions of ground state oxygen molecules with Helium have been
investigated in a wide range of cold collision energies (from 1 K up to 10
K) treating the oxygen molecule first as a rigid rotor and then introducing the
vibrational degree of freedom. The comparison between the two models shows that
at low energies the rigid rotor approximation is very accurate and able to
describe all the dynamical features of the system. The comparison between the
two models has also been extended to cases where the interaction potential He -
O is made artificially stronger. In this case vibration can perturb rate
constants, but fine-tuning the rigid rotor potential can alleviate the
discrepancies between the two models.Comment: 11 pages, 3 figure
Probing semiclassical analogue gravity in Bose--Einstein condensates with widely tunable interactions
Bose-Einstein condensates (BEC) have recently been the subject of
considerable study as possible analogue models of general relativity. In
particular it was shown that the propagation of phase perturbations in a BEC
can, under certain conditions, closely mimic the dynamics of scalar quantum
fields in curved spacetimes. In two previous articles [gr-qc/0110036,
gr-qc/0305061] we noted that a varying scattering length in the BEC corresponds
to a varying speed of light in the ``effective metric''. Recent experiments
have indeed achieved a controlled tuning of the scattering length in Rubidium
85. In this article we shall discuss the prospects for the use of this
particular experimental effect to test some of the predictions of semiclassical
quantum gravity, for instance, particle production in an expanding universe. We
stress that these effects are generally much larger than the Hawking radiation
expected from causal horizons, and so there are much better chances for their
detection in the near future.Comment: 18 pages; uses revtex4. V2: Added brief discussion of "Bose-Nova"
phenomenon, and appropriate reference
Photoassociation spectroscopy of cold calcium atoms
Photoassociation spectroscopy experiments on 40Ca atoms close to the
dissociation limit 4s4s 1S0 - 4s4p 1P1 are presented. The vibronic spectrum was
measured for detunings of the photoassociation laser ranging from 0.6 GHz to 68
GHz with respect to the atomic resonance. In contrast to previous measurements
the rotational splitting of the vibrational lines was fully resolved. Full
quantum mechanical numerical simulations of the photoassociation spectrum were
performed which allowed us to put constraints on the possible range of the
calcium scattering length to between 50 a_0 and 300 a_0
Interactions between arbuscular mycorrhizal fungi and intraspecific competition affect size and size inequality of Plantago lanceolata L.
Intraspecific competition causes decreases in plant size and increases in size inequality. Arbuscular mycorrhizas usually increase the size and inequality of non-competing plants, but mycorrhizal effects often disappear when plants begin competing. We hypothesized that mycorrhizal effects on size inequality would be determined by the experimental conditions, and conducted simultaneous field and glasshouse experiments to investigate how AM fungi and intraspecific competition determine size inequality in Plantago lanceolata.
2 As predicted, plant size was reduced when plants were competing, in both field and controlled conditions. However, size inequality was unexpectedly reduced by competition. Plants may have competed in a symmetric fashion, probably for nutrients, rather than the more common situation, in which plant competition is strongly asymmetric.
3 Mycorrhizas had no effect on plant size or size inequality in competing plants in either field or controlled conditions, possibly because competition for nutrients was intense and negated any benefit the fungi could provide.
4 The effects of mycorrhizas on non-competing plants were also unexpected. In field-grown plants, AM fungi increased plant size, but decreased size inequality: mycorrhizal plants were more even in size, with few very small individuals. In glasshouse conditions, mycorrhizal colonization was extremely high, and was generally antagonistic, causing a reduction in plant size. Here, however, mycorrhizas caused an increase in size inequality, supporting our original hypothesis. This was because most plants were heavily colonized and small, but a few had low levels of colonization and grew relatively large.
5 This study has important implications for understanding the forces that structure plant communities. AM fungi can have a variety of effects on size inequality and thus potentially important influences on long-term plant population dynamics, by affecting the genetic contribution of individuals to the next generation. However, these effects differ, depending on whether plants are competing or not, the degree of mycorrhizal colonization and the responsiveness of the plant to different colonization densities
The Conformal Willmore Functional: a Perturbative Approach
The conformal Willmore functional (which is conformal invariant in general
Riemannian manifold ) is studied with a perturbative method: the
Lyapunov-Schmidt reduction. Existence of critical points is shown in ambient
manifolds -where is a metric close
and asymptotic to the euclidean one. With the same technique a non existence
result is proved in general Riemannian manifolds of dimension three.Comment: 34 pages; Journal of Geometric Analysis, on line first 23 September
201
Discrete kink dynamics in hydrogen-bonded chains I: The one-component model
We study topological solitary waves (kinks and antikinks) in a nonlinear
one-dimensional Klein-Gordon chain with the on-site potential of a double-Morse
type. This chain is used to describe the collective proton dynamics in
quasi-one-dimensional networks of hydrogen bonds, where the on-site potential
plays role of the proton potential in the hydrogen bond. The system supports a
rich variety of stationary kink solutions with different symmetry properties.
We study the stability and bifurcation structure of all these stationary kink
states. An exactly solvable model with a piecewise ``parabola-constant''
approximation of the double-Morse potential is suggested and studied
analytically. The dependence of the Peierls-Nabarro potential on the system
parameters is studied. Discrete travelling-wave solutions of a narrow permanent
profile are shown to exist, depending on the anharmonicity of the Morse
potential and the cooperativity of the hydrogen bond (the coupling constant of
the interaction between nearest-neighbor protons).Comment: 12 pages, 20 figure
Self-consistent model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps
We consider the problem of cold atomic collisions in tight traps, where the
absolute scattering length may be larger than the trap size. As long as the
size of the trap ground state is larger than a characteristic length of the van
der Waals potential, the energy eigenvalues can be computed self-consistently
from the scattering amplitude for untrapped atoms. By comparing with the exact
numerical eigenvalues of the trapping plus interatomic potentials, we verify
that our model gives accurate eigenvalues up to milliKelvin energies for single
channel s-wave scattering of Na atoms in an isotropic harmonic trap,
even when outside the Wigner threshold regime. Our model works also for
multi-channel scattering, where the scattering length can be made large due to
a magnetically tunable Feshbach resonance.Comment: 7 pages, 4 figures (PostScript), submitted to Physical Review
Model study on the photoassociation of a pair of trapped atoms into an ultralong-range molecule
Using the method of quantum-defect theory, we calculate the ultralong-range
molecular vibrational states near the dissociation threshold of a diatomic
molecular potential which asymptotically varies as . The properties of
these states are of considerable interest as they can be formed by
photoassociation (PA) of two ground state atoms. The Franck-Condon overlap
integrals between the harmonically trapped atom-pair states and the
ultralong-range molecular vibrational states are estimated and compared with
their values for a pair of untrapped free atoms in the low-energy scattering
state. We find that the binding between a pair of ground-state atoms by a
harmonic trap has significant effect on the Franck-Condon integrals and thus
can be used to influence PA. Trap-induced binding between two ground-state
atoms may facilitate coherent PA dynamics between the two atoms and the
photoassociated diatomic molecule.Comment: 11 pages, 4 figures, to appear in Phys. Rev. A (September, 2003
- …
