32 research outputs found
The Steady State Fluctuation Relation for the Dissipation Function
We give a proof of transient fluctuation relations for the entropy production
(dissipation function) in nonequilibrium systems, which is valid for most time
reversible dynamics. We then consider the conditions under which a transient
fluctuation relation yields a steady state fluctuation relation for driven
nonequilibrium systems whose transients relax, producing a unique
nonequilibrium steady state. Although the necessary and sufficient conditions
for the production of a unique nonequilibrium steady state are unknown, if such
a steady state exists, the generation of the steady state fluctuation relation
from the transient relation is shown to be very general. It is essentially a
consequence of time reversibility and of a form of decay of correlations in the
dissipation, which is needed also for, e.g., the existence of transport
coefficients. Because of this generality the resulting steady state fluctuation
relation has the same degree of robustness as do equilibrium thermodynamic
equalities. The steady state fluctuation relation for the dissipation stands in
contrast with the one for the phase space compression factor, whose convergence
is problematic, for systems close to equilibrium. We examine some model
dynamics that have been considered previously, and show how they are described
in the context of this work.Comment: 30 pages, 1 figur
Stationary and Transient Work-Fluctuation Theorems for a Dragged Brownian Particle
Recently Wang et al. carried out a laboratory experiment, where a Brownian
particle was dragged through a fluid by a harmonic force with constant velocity
of its center. This experiment confirmed a theoretically predicted work related
integrated (I) Transient Fluctuation Theorem (ITFT), which gives an expression
for the ratio for the probability to find positive or negative values for the
fluctuations of the total work done on the system in a given time in a
transient state. The corresponding integrated stationary state fluctuation
theorem (ISSFT) was not observed. Using an overdamped Langevin equation and an
arbitrary motion for the center of the harmonic force, all quantities of
interest for these theorems and the corresponding non-integrated ones (TFT and
SSFT, resp.) are theoretically explicitly obtained in this paper. While the
(I)TFT is satisfied for all times, the (I)SSFT only holds asymptotically in
time. Suggestions for further experiments with arbitrary velocity of the
harmonic force and in which also the ISSFT could be observed, are given. In
addition, a non-trivial long-time relation between the ITFT and the ISSFT was
discovered, which could be observed experimentally, especially in the case of a
resonant circular motion of the center of the harmonic force.Comment: 20 pages, 3 figure
Fluctuation formula for nonreversible dynamics in the thermostated Lorentz gas
We investigate numerically the validity of the Gallavotti-Cohen fluctuation
formula in the two and three dimensional periodic Lorentz gas subjected to
constant electric and magnetic fields and thermostated by the Gaussian
isokinetic thermostat. The magnetic field breaks the time reversal symmetry,
and by choosing its orientation with respect to the lattice one can have either
a generalized reversing symmetry or no reversibility at all. Our results
indicate that the scaling property described by the fluctuation formula may be
approximately valid for large fluctuations even in the absence of
reversibility.Comment: 6 pages, 6 figure
Fluctuation Relations for Diffusion Processes
The paper presents a unified approach to different fluctuation relations for
classical nonequilibrium dynamics described by diffusion processes. Such
relations compare the statistics of fluctuations of the entropy production or
work in the original process to the similar statistics in the time-reversed
process. The origin of a variety of fluctuation relations is traced to the use
of different time reversals. It is also shown how the application of the
presented approach to the tangent process describing the joint evolution of
infinitesimally close trajectories of the original process leads to a
multiplicative extension of the fluctuation relations.Comment: 38 page
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe