283 research outputs found

    Entropy of the Schwarzschild-de Sitter Black Hole due to arbitrary spin fields in different Coordinates

    Full text link
    By using the Newman-Penrose formalism and the improved thin-layer ``brick wall'' approach, the statistical-mechanical entropies of the Schwarzschild-de Sitter black hole arising from quantum massless arbitrary spin fields are studied in the Painlev\'e and Lemaitre coordinates. Although the metrics in both the Painlev\'e and the Lemaitre coordinates do not obviously possess the singularities as that in the Schwarzschild-like coordinate, we find that, for arbitrary spin fields, the entropies in the Painlev\'e and Lemaitre coordinates are exactly equivalent to that in the Schwarzschild-like coordinate.Comment: 14 pages, no figure, to be published in JHE

    A new quasi-exactly solvable problem and its connection with an anharmonic oscillator

    Full text link
    The two-dimensional hydrogen with a linear potential in a magnetic field is solved by two different methods. Furthermore the connection between the model and an anharmonic oscillator had been investigated by methods of KS transformation

    Symmetries at stationary Killing horizons

    Full text link
    It has often been suggested (especially by Carlip) that spacetime symmetries in the neighborhood of a black hole horizon may be relevant to a statistical understanding of the Bekenstein-Hawking entropy. A prime candidate for this type of symmetry is that which is exhibited by the Einstein tensor. More precisely, it is now known that this tensor takes on a strongly constrained (block-diagonal) form as it approaches any stationary, non-extremal Killing horizon. Presently, exploiting the geometrical properties of such horizons, we provide a particularly elegant argument that substantiates this highly symmetric form for the Einstein tensor. It is, however, duly noted that, on account of a "loophole", the argument does fall just short of attaining the status of a rigorous proof.Comment: 11 pages, Revte

    Recalculation of QCD Corrections to bsγb \to s \gamma Decay

    Full text link
    We give a more complete calculation of bsγb \to s\gamma decay, including leading log QCD corrections from mtopm_{top} to MWM_W in addition to corrections from MWM_{W} to mbm_b. We have included the full set of dimension-6 operators and corrected numerical mistakes of anomalous dimensions in a previous paper\cite{Cho}. Comparing with the calculations without QCD running from mtopm_{top} to MWM_W\cite{Mis}, the inclusive decay rate is found to be enhanced. At mt=150m_t=150GeV, it results in 12\% enhancement, and for mt=250m_t=250GeV, 15\% is found. The total QCD effect makes an enhanced factor of 4.2 at mt=150m_t=150GeV, and 3.2 for mt=250m_t=250GeV.Comment: 16 pages, 7 figures (uuencoded ps files), Changes of description. To appear in Phys. Rev.

    Higgs algebraic symmetry of screened system in a spherical geometry

    Full text link
    The orbits and the dynamical symmetries for the screened Coulomb potentials and isotropic harmonic oscillators have been studied by Wu and Zeng [Z. B. Wu and J. Y. Zeng, Phys. Rev. A 62,032509 (2000)]. We find the similar properties in the responding systems in a spherical space, whose dynamical symmetries are described by Higgs Algebra. There exists a conserved aphelion and perihelion vector, which, together with angular momentum, constitute the generators of the geometrical symmetry group at the aphelia and perihelia points (r˙=0)(\dot{r}=0).Comment: 8 pages, 1 fi

    Estimation of solar prominence magnetic fields based on the reconstructed 3D trajectories of prominence knots

    Full text link
    We present an estimation of the lower limits of local magnetic fields in quiescent, activated, and active (surges) promineces, based on reconstructed 3-dimensional (3D) trajectories of individual prominence knots. The 3D trajectories, velocities, tangential and centripetal accelerations of the knots were reconstructed using observational data collected with a single ground-based telescope equipped with a Multi-channel Subtractive Double Pass imaging spectrograph. Lower limits of magnetic fields channeling observed plasma flows were estimated under assumption of the equipartition principle. Assuming approximate electron densities of the plasma n_e = 5*10^{11} cm^{-3} in surges and n_e = 5*10^{10} cm^{-3} in quiescent/activated prominences, we found that the magnetic fields channeling two observed surges range from 16 to 40 Gauss, while in quiescent and activated prominences they were less than 10 Gauss. Our results are consistent with previous detections of weak local magnetic fields in the solar prominences.Comment: 14 pages, 12 figures, 1 tabl

    Effects of dark sectors' mutual interaction on the growth of structures

    Full text link
    We present a general formalism to study the growth of dark matter perturbations when dark energy perturbations and interactions between dark sectors are present. We show that dynamical stability of the growth of structure depends on the type of coupling between dark sectors. By taking the appropriate coupling to ensure the stable growth of structure, we observe that the effect of the dark sectors' interaction overwhelms that of dark energy perturbation on the growth function of dark matter perturbation. Due to the influence of the interaction, the growth index can differ from the value without interaction by an amount within the observational sensibility, which provides a possibility to disclose the interaction between dark sectors through future observations on the growth of large structure.Comment: 15 pages, 4 figures, revised version, to appear in JCA

    The Footprint of F-theory at the LHC

    Full text link
    Recent work has shown that compactifications of F-theory provide a potentially attractive phenomenological scenario. The low energy characteristics of F-theory GUTs consist of a deformation away from a minimal gauge mediation scenario with a high messenger scale. The soft scalar masses of the theory are all shifted by a stringy effect which survives to low energies. This effect can range from 0 GeV up to ~ 500 GeV. In this paper we study potential collider signatures of F-theory GUTs, focussing in particular on ways to distinguish this class of models from other theories with an MSSM spectrum. To accomplish this, we have adapted the general footprint method developed recently for distinguishing broad classes of string vacua to the specific case of F-theory GUTs. We show that with only 5 fb^(-1) of simulated LHC data, it is possible to distinguish many mSUGRA models and low messenger scale gauge mediation models from F-theory GUTs. Moreover, we find that at 5 fb^(-1), the stringy deformation away from minimal gauge mediation produces observable consequences which can also be detected to a level of order ~ +/- 80 GeV. In this way, it is possible to distinguish between models with a large and small stringy deformation. At 50 fb^(-1), this improves to ~ +/- 10 GeV.Comment: 85 pages, 37 figure

    Quasinormal modes of a Schwarzschild black hole surrounded by free static spherically symmetric quintessence: Electromagnetic perturbations

    Full text link
    In this paper, we evaluated the quasinormal modes of electromagnetic perturbation in a Schwarzschild black hole surrounded by the static spherically symmetric quintessence by using the third-order WKB approximation when the quintessential state parameter wq w_{q} in the range of 1/3<wq<0-1/3<w_{q}<0. Due to the presence of quintessence, Maxwell field damps more slowly. And when at 1<wq<1/3-1<w_{q}<-1/3, it is similar to the black hole solution in the ds/Ads spacetime. The appropriate boundary conditions need to be modified.Comment: 6 pages, 3 figure

    Effects of acceleration on the collision of particles in the rotating black hole spacetime

    Full text link
    We study the collision of two geodesic particles in the accelerating and rotating black hole spacetime and probe the effects of the acceleration of black hole on the center-of-mass energy of the colliding particles and on the high-velocity collision belts. We find that the dependence of the center-of-mass energy on the acceleration in the near event-horizon collision is different from that in the near acceleration-horizon case. Moreover, the presence of the acceleration changes the shape and position of the high-velocity collision belts. Our results show that the acceleration of black holes brings richer physics for the collision of particles.Comment: 7 pages, 2 figures, The corrected version accepted for publication in EPJ
    corecore