14 research outputs found
Recommended from our members
Spectral ellipsometry of GaSb and GaInAsSb: Experiment and modeling
The optical constants {epsilon}(E)[={epsilon}{sub 1}(E)+i{epsilon}{sub 2}(E)] of single-crystal GaSb at 300K have been measured using spectral ellipsometry in the range of 0.3-5.3 eV. The {epsilon}(E) spectra displayed distinct structures associated with critical points (CPs) at E{sub 0} (direct gap), spin-orbit split E{sub 0}+{Delta}{sub 0} component, spin-orbit split (E{sub 1}, E{sub 1}+{Delta}{sub 1}) and (E{sub 0}{prime}, E{sub 0}{prime}+{Delta}{sub 0}{prime}) doublets, as well as E{sub 2}. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holden model dielectric function based on the electronic energy-band structure near these CPs plus excitonic and band-to-band Coulomb enhancement effects at E{sub 0}, E{sub 0}+{Delta}{sub 0} and the E{sub 1}, E{sub 1}+{Delta}{sub 1} doublet. In addition to evaluating the energies of these various band-to-band CPs, information about the binding energy (R{sub 1}) of the two-dimensional exciton related to the E{sub 1}, E{sub 1}+{Delta}{sub 1} CPs was obtained. The value of R{sub 1} was in good agreement with effective mass/k{sup {rightharpoonup}}{center_dot}p{sup {rightharpoonup}} theory. The ability to evaluate R{sub 1} has important ramifications for recent first-principles band structure calculations which include exciton effects at E{sub 0}, E{sub 1}, and E{sub 2}. The experimental results were compared to other evaluations of the optical constants of GaSb
Recommended from our members
Spectral ellipsometry of GaSb: Experiment and modelling
The optical constants {epsilon}(E)[{equals}{epsilon}{sub 1}(E) + i{epsilon}{sub 2}(E)] of single crystal GaSb at 300K have been measured using spectral ellipsometry in the range of 0.3--5.3 eV. The {epsilon}(E) spectra displayed distinct structures associated with critical points (CPs) at E{sub 0}(direct gap), spin-orbit split E{sub 0} + {Delta}{sub 0} component, spin-orbit split (E{sub 1}), E{sub 1} + {Delta}{sub 1} and (E{sub 0}{prime}), E{sub 0}{prime} + {Delta}{sub 0}{prime} doublets, as well as E{sub 2}. The experimental data over the entire measured spectral range (after oxide removal) has been fit using the Holden model dielectric function [Phys.Rev.B 56, 4037 (1997)] based on the electronic energy-band structure near these CPs plus excitonic and band-to-band Coulomb enhancement effects at E{sub 0}, E{sub 0} + {Delta}{sub 0}and the E{sub 1}, E{sub 1} + {Delta}{sub 1} doublet. In addition to evaluating the energies of these various band-to-band CPs, information about the binding energy (R{sub 1}) of the two-dimensional exciton related to the E{sub 1}, E{sub 1} + {Delta}{sub 1} CPS was obtained. The value of R{sub 1} was in good agreement with effective mass/{rvec k} {center_dot} {rvec p} theory. The ability to evaluate R{sub 1} has important ramifications for recent first-principles band structure calculations which include exciton effects at E{sub 0}, E{sub 1}, and E{sub 2}