14 research outputs found

    Mobile encapsulation and volume reduction system for wet low-level wastes

    No full text
    This report describes the results of the program entitled ''A Preconceptual Study for a Transportable Vitrification Process''. The objective of the study is to determine the feasibility of a Mobile Encapsulation and Volume Reduction System (MEVS). The report contains design criteria, a preconceptual design of the system, a comparison of disposal costs with other solidification technologies, and an assessment of utility interests in the transportable volume reduction service MEVS can provide. The MEVS design employs the use of a joule-heated glass melter to convert the wet low-level wastes into glass. The process is self-sufficient, requiring no direct facility services or reactor personnel. It is capable of servicing one waste type from a minimum of three reactors. The design was used to prepare capital and operating cost estimates. The capital cost for the MEVS is 4,680,000,whichincludesalllabornecessaryfordesign,engineering,inspection,andlicensing.Theoperatingcostofthesystemforservicingaminimumofthreereactorsis4,680,000, which includes all labor necessary for design, engineering, inspection, and licensing. The operating cost of the system for servicing a minimum of three reactors is 1,530,000/y for resins or 2,280,000/yforconcentratedliquids.Thecostestimatescomparedfavorablytothemorecommonsolidificationprocessofcementation.TotalMEVSoperatingcostswhichincludeprocessing,transportationandburial,are2,280,000/y for concentrated liquids. The cost estimates compared favorably to the more common solidification process of cementation. Total MEVS operating costs which include processing, transportation and burial, are 191 to 218/ft/sup3/waste,whereasquotedcostsforcementationanddisposalfromreactoroperatorsrangefrom218/ft/sup 3/ waste, whereas quoted costs for cementation and disposal from reactor operators range from 155 to $350/ft/sup 3/. The report concludes with the requirements for additional development, which can be accomplished for less than one sixth of the capital costs. The report also presents the results of an assessment conducted with utility representatives to obtain their expressions of interest in a service of this type

    In situ vitrification of soil from the Savannah River Site

    No full text
    Contamination associated with seepage basins and other underground structures at US Department of Energy sites may be effectively remediated by application of in situ vitrification (ISV) technology. In situ vitrification converts contaminated soil and buried wastes into a glass and crystalline block, similar to obsidian commingled with crystalline phases. Two bench-scale tests performed at Pacific Northwest Laboratory (PNL) in September 1989 demonstrated the feasibility of applying ISV to seepage basin soils at the Savannah River Site (SRS) in South Carolina. The two tests were performed on soils spiked with heavy metal and organic contaminants as well as stable radioactive simulants. These soils contain extremely low concentrations of alkali fluxes such as sodium and potassium oxides, which are necessary charge carriers for the ISV process. Tests performed on the low flux-containing soil indicate the soil can be vitrified with special application of the ISV process. Tests showed the hazardous and radioactive simulants were successfully bound in the vitrified product and the organics were mostly destroyed. Additional larger scale testing and evaluation are recommended to further study the feasibility of treating contaminated SRS soil by the ISV process. 13 refs., 12 figs., 7 tabs

    Safety assessment of the liquid-fed ceramic melter process

    No full text
    As part of its development program for the solidification of high-level nuclear waste, Pacific Northwest Laboratory assessed the safety issues for a complete liquid-fed ceramic melter (LFCM) process. The LFCM process, an adaption of commercial glass-making technology, is being developed to convert high-level liquid waste from the nuclear fuel cycle into glass. This safety assessment uncovered no unresolved or significant safety problems with the LFCM process. Although in this assessment the LFCM process was not directly compared with other solidification processes, the safety hazards of the LFCM process are comparable to those of other processes. The high processing temperatures of the glass in the LFCM pose no additional significant safety concerns, and the dispersible inventory of dried waste (calcine) is small. This safety assessment was based on the nuclear power waste flowsheet, since power waste is more radioactive than defense waste at the time of solidification, and all accident conditions for the power waste would have greater radiological consequences than those for defense waste. An exhaustive list of possible off-standard conditions and equipment failures was compiled. These accidents were then classified according to severity of consequence and type of accident. Radionuclide releases to the stack were calculated for each group of accidents using conservative assumptions regarding the retention and decontamination features of the process and facility. Two recommendations that should be considered by process designers are given in the safety assessment

    In situ vitrification large-scale operational acceptance test analysis

    No full text
    A thermal treatment process is currently under study to provide possible enhancement of in-place stabilization of transuranic and chemically contaminated soil sites. The process is known as in situ vitrification (ISV). In situ vitrification is a remedial action process that destroys solid and liquid organic contaminants and incorporates radionuclides into a glass-like material that renders contaminants substantially less mobile and less likely to impact the environment. A large-scale operational acceptance test (LSOAT) was recently completed in which more than 180 t of vitrified soil were produced in each of three adjacent settings. The LSOAT demonstrated that the process conforms to the functional design criteria necessary for the large-scale radioactive test (LSRT) to be conducted following verification of the performance capabilities of the process. The energy requirements and vitrified block size, shape, and mass are sufficiently equivalent to those predicted by the ISV mathematical model to confirm its usefulness as a predictive tool. The LSOAT demonstrated an electrode replacement technique, which can be used if an electrode fails, and techniques have been identified to minimize air oxidation, thereby extending electrode life. A statistical analysis was employed during the LSOAT to identify graphite collars and an insulative surface as successful cold cap subsidence techniques. The LSOAT also showed that even under worst-case conditions, the off-gas system exceeds the flow requirements necessary to maintain a negative pressure on the hood covering the area being vitrified. The retention of simulated radionuclides and chemicals in the soil and off-gas system exceeds requirements so that projected emissions are one to two orders of magnitude below the maximum permissible concentrations of contaminants at the stack

    Description and capabilities of the large-scale in situ vitrification process

    No full text
    An emerging thermal treatment process known as in situ vitrification is being developed to immobilize selected portions of radioactively contaminated soils. The process is a permanent remedial action that destroys solid and liquid organic contaminants and incorporates radionuclides and heavy metals into a glass and crystalline form. The process's flexibility in design and broad capabilities make it potentially adaptable to mixed and chemical wastes, as well. The process consists of an electrical power system for vitrifying contaminated soil, a hood to contain gaseous effluents, an off-gas treatment system, an off-gas cooling system, and a process control station. The process is mounted in three transportable trailers that can be easily moved from site to site. The process is capable of treating contaminated soils at least 13 m deep. The system components are designed to accommodate waste inclusions in the soil such as metals, combustibles, and large voids. Selectively applied to the more troublesome radioactively contaminated soils, in situ vitrification provides a potentially useful and permanent tool for remedial action

    Engineered sorbent barriers for low-level waste disposal.

    No full text
    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs
    corecore