94 research outputs found
Ultracold Rb-OH Collisions and Prospects for Sympathetic Cooling
We compute ab initio cross sections for cold collisions of Rb atoms with OH radicals. We predict collision rate constants of order 10-11 cm3/s at temperatures in the range 10â100 mK at which molecules have already been produced. However, we also find that in these collisions the molecules have a strong propensity for changing their internal state, which could make sympathetic cooling of OH in a Rb buffer gas problematic in magnetostatic or electrostatic traps
Autler-Townes splitting in two-color photoassociation of 6Li
We report on high-resolution two-color photoassociation spectroscopy in the
triplet system of magneto-optically trapped 6Li. The absolute transition
frequencies have been measured. Strong optical coupling of the bound molecular
states has been observed as Autler-Townes splitting in the photoassociation
signal. The spontaneous bound-bound transition rate is determined and the
molecule formation rate is estimated. The observed lineshapes are in good
agreement with the theoretical model.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. A (Rapid
Communication
Molecular vibration in cold collision theory
Cold collisions of ground state oxygen molecules with Helium have been
investigated in a wide range of cold collision energies (from 1 K up to 10
K) treating the oxygen molecule first as a rigid rotor and then introducing the
vibrational degree of freedom. The comparison between the two models shows that
at low energies the rigid rotor approximation is very accurate and able to
describe all the dynamical features of the system. The comparison between the
two models has also been extended to cases where the interaction potential He -
O is made artificially stronger. In this case vibration can perturb rate
constants, but fine-tuning the rigid rotor potential can alleviate the
discrepancies between the two models.Comment: 11 pages, 3 figure
Two-body correlations in Bose condensates
We formulate a method to study two-body correlations in a condensate of N
identical bosons. We use the adiabatic hyperspheric approach and assume a
Faddeev like decomposition of the wave function. We derive for a fixed
hyperradius an integro-differential equation for the angular eigenvalue and
wave function. We discuss properties of the solutions and illustrate with
numerical results. The interaction energy is for N~20 five times smaller than
that of the Gross-Pitaevskii equation
Field-linked States of Ultracold Polar Molecules
We explore the character of a novel set of ``field-linked'' states that were
predicted in [A. V. Avdeenkov and J. L. Bohn, Phys. Rev. Lett. 90, 043006
(2003)]. These states exist at ultralow temperatures in the presence of an
electrostatic field, and their properties are strongly dependent on the field's
strength. We clarify the nature of these quasi-bound states by constructing
their wave functions and determining their approximate quantum numbers. As the
properties of field-linked states are strongly defined by anisotropic dipolar
and Stark interactions, we construct adiabatic surfaces as functions of both
the intermolecular distance and the angle that the intermolecular axis makes
with the electric field. Within an adiabatic approximation we solve the 2-D
Schrodinger equation to find bound states, whose energies correlate well with
resonance features found in fully-converged multichannel scattering
calculations
Correlated N-boson systems for arbitrary scattering length
We investigate systems of identical bosons with the focus on two-body
correlations and attractive finite-range potentials. We use a hyperspherical
adiabatic method and apply a Faddeev type of decomposition of the wave
function. We discuss the structure of a condensate as function of particle
number and scattering length. We establish universal scaling relations for the
critical effective radial potentials for distances where the average distance
between particle pairs is larger than the interaction range. The correlations
in the wave function restore the large distance mean-field behaviour with the
correct two-body interaction. We discuss various processes limiting the
stability of condensates. With correlations we confirm that macroscopic
tunneling dominates when the trap length is about half of the particle number
times the scattering length.Comment: 15 pages (RevTeX4), 11 figures (LaTeX), submitted to Phys. Rev. A.
Second version includes an explicit comparison to N=3, a restructured
manuscript, and updated figure
Two-fermion bound state in a Bose-Einstein condensate
A nonlinear Schr\"odinger equation is derived for the dynamics of a beam of
ultracold fermionic atoms traversing a Bose-Einstein condensate. The condensate
phonon modes are shown to provide a nonlinear medium for the fermionic atoms. A
two-fermion bound state is predicted to arise, and the signature of the bound
state in a nonlinear atom optics experiment is discussed.Comment: 4 pages, 1 figure
Quantum Corrections to Dilute Bose Liquids
It was recently shown (A. Bulgac. Phys. Rev. Lett. {\bf 89}, 050402 (2002))
that an entirely new class of quantum liquids with widely tunable properties
could be manufactured from bosons (boselets), fermions (fermilets) and their
mixtures (ferbolets) by controlling their interaction properties by the means
of a Feshbach resonance. We extend the previous mean--field analysis of these
quantum liquids by computing the lowest order quantum corrections to the ground
state energy and the depletion of the Bose--Einstein condensate and by
estimating higher order corrections as well. We show that the quantum
corrections are relatively small and controlled by the diluteness parameter
, even though strictly speaking in this case there is no
low density expansion.Comment: final published version, typos corrected, updated references and
added one referenc
High-precision calculations of van der Waals coefficients for heteronuclear alkali-metal dimers
Van der Waals coefficients for the heteronuclear alkali-metal dimers of Li,
Na, K, Rb, Cs, and Fr are calculated using relativistic ab initio methods
augmented by high-precision experimental data. We argue that the uncertainties
in the coefficients are unlikely to exceed about 1%.Comment: 11 pages, 2 figs, graphicx.st
- âŠ