93 research outputs found

    Ultracold Rb-OH Collisions and Prospects for Sympathetic Cooling

    Get PDF
    We compute ab initio cross sections for cold collisions of Rb atoms with OH radicals. We predict collision rate constants of order 10-11 cm3/s at temperatures in the range 10–100 mK at which molecules have already been produced. However, we also find that in these collisions the molecules have a strong propensity for changing their internal state, which could make sympathetic cooling of OH in a Rb buffer gas problematic in magnetostatic or electrostatic traps

    Autler-Townes splitting in two-color photoassociation of 6Li

    Full text link
    We report on high-resolution two-color photoassociation spectroscopy in the triplet system of magneto-optically trapped 6Li. The absolute transition frequencies have been measured. Strong optical coupling of the bound molecular states has been observed as Autler-Townes splitting in the photoassociation signal. The spontaneous bound-bound transition rate is determined and the molecule formation rate is estimated. The observed lineshapes are in good agreement with the theoretical model.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. A (Rapid Communication

    Molecular vibration in cold collision theory

    Full text link
    Cold collisions of ground state oxygen molecules with Helium have been investigated in a wide range of cold collision energies (from 1 Ό\muK up to 10 K) treating the oxygen molecule first as a rigid rotor and then introducing the vibrational degree of freedom. The comparison between the two models shows that at low energies the rigid rotor approximation is very accurate and able to describe all the dynamical features of the system. The comparison between the two models has also been extended to cases where the interaction potential He - O2_2 is made artificially stronger. In this case vibration can perturb rate constants, but fine-tuning the rigid rotor potential can alleviate the discrepancies between the two models.Comment: 11 pages, 3 figure

    Two-body correlations in Bose condensates

    Full text link
    We formulate a method to study two-body correlations in a condensate of N identical bosons. We use the adiabatic hyperspheric approach and assume a Faddeev like decomposition of the wave function. We derive for a fixed hyperradius an integro-differential equation for the angular eigenvalue and wave function. We discuss properties of the solutions and illustrate with numerical results. The interaction energy is for N~20 five times smaller than that of the Gross-Pitaevskii equation

    Field-linked States of Ultracold Polar Molecules

    Full text link
    We explore the character of a novel set of ``field-linked'' states that were predicted in [A. V. Avdeenkov and J. L. Bohn, Phys. Rev. Lett. 90, 043006 (2003)]. These states exist at ultralow temperatures in the presence of an electrostatic field, and their properties are strongly dependent on the field's strength. We clarify the nature of these quasi-bound states by constructing their wave functions and determining their approximate quantum numbers. As the properties of field-linked states are strongly defined by anisotropic dipolar and Stark interactions, we construct adiabatic surfaces as functions of both the intermolecular distance and the angle that the intermolecular axis makes with the electric field. Within an adiabatic approximation we solve the 2-D Schrodinger equation to find bound states, whose energies correlate well with resonance features found in fully-converged multichannel scattering calculations

    Correlated N-boson systems for arbitrary scattering length

    Full text link
    We investigate systems of identical bosons with the focus on two-body correlations and attractive finite-range potentials. We use a hyperspherical adiabatic method and apply a Faddeev type of decomposition of the wave function. We discuss the structure of a condensate as function of particle number and scattering length. We establish universal scaling relations for the critical effective radial potentials for distances where the average distance between particle pairs is larger than the interaction range. The correlations in the wave function restore the large distance mean-field behaviour with the correct two-body interaction. We discuss various processes limiting the stability of condensates. With correlations we confirm that macroscopic tunneling dominates when the trap length is about half of the particle number times the scattering length.Comment: 15 pages (RevTeX4), 11 figures (LaTeX), submitted to Phys. Rev. A. Second version includes an explicit comparison to N=3, a restructured manuscript, and updated figure

    Two-fermion bound state in a Bose-Einstein condensate

    Full text link
    A nonlinear Schr\"odinger equation is derived for the dynamics of a beam of ultracold fermionic atoms traversing a Bose-Einstein condensate. The condensate phonon modes are shown to provide a nonlinear medium for the fermionic atoms. A two-fermion bound state is predicted to arise, and the signature of the bound state in a nonlinear atom optics experiment is discussed.Comment: 4 pages, 1 figure

    Quantum Corrections to Dilute Bose Liquids

    Full text link
    It was recently shown (A. Bulgac. Phys. Rev. Lett. {\bf 89}, 050402 (2002)) that an entirely new class of quantum liquids with widely tunable properties could be manufactured from bosons (boselets), fermions (fermilets) and their mixtures (ferbolets) by controlling their interaction properties by the means of a Feshbach resonance. We extend the previous mean--field analysis of these quantum liquids by computing the lowest order quantum corrections to the ground state energy and the depletion of the Bose--Einstein condensate and by estimating higher order corrections as well. We show that the quantum corrections are relatively small and controlled by the diluteness parameter n∣a∣3â‰Ș1\sqrt{n|a|^3} \ll 1, even though strictly speaking in this case there is no low density expansion.Comment: final published version, typos corrected, updated references and added one referenc

    High-precision calculations of van der Waals coefficients for heteronuclear alkali-metal dimers

    Get PDF
    Van der Waals coefficients for the heteronuclear alkali-metal dimers of Li, Na, K, Rb, Cs, and Fr are calculated using relativistic ab initio methods augmented by high-precision experimental data. We argue that the uncertainties in the coefficients are unlikely to exceed about 1%.Comment: 11 pages, 2 figs, graphicx.st
    • 

    corecore