435 research outputs found

    Pump power reduction by photodarkening in Yb-doped fibres

    No full text
    The influence of the photodarkening at a pump wavelength to envisage the direct impact of the photodarkening in the YDF based devices is reported. Results suggest that the photodarkening does not only induce excess background loss as commonly interpreted, but also influences pump efficiency

    Efficient low-threshold lasers based on an erbium-doped holey fiber

    Get PDF
    We report experimental results on the continuous-wave lasers based on a small core erbium-doped holey fiber. In a simple Fabry-Perot-type cavity with high output coupling, we demonstrate low-threshold (0.55 mW) high slope-efficiency (57.3%) operation confirming both the quality and exceptionally high gain efficiency of the fiber. In an all-fiber ring cavity where the cavity loss is reduced, we show that it is possible to achieve a low-threshold laser with extremely wide tunability (>100 nm around 1550 nm). Our results illustrate some of the unique opportunities provided by active small core holey fibers

    Multi-element fiber technology for space-division multiplexing applications

    No full text
    A novel technological approach to space division multiplexing (SDM) based on the use of multiple individual fibers embedded in a common polymer coating material is presented, which is referred to as Multi-Element Fiber (MEF). The approach ensures ultralow crosstalk between spatial channels and allows for cost-effective ways of realizing multi-spatial channel amplification and signal multiplexing/demultiplexing. Both the fabrication and characterization of a passive 3-element MEF for data transmission, and an active 5-element erbium/ytterbium doped MEF for cladding-pumped optical amplification that uses one of the elements as an integrated pump delivery fiber is reported. Finally, both components were combined to emulate an optical fiber network comprising SDM transmission lines and amplifiers, and illustrate the compatibility of the approach with existing installed single-mode WDM fiber systems

    Raman amplification and pulsed lasing in cladding-pumped germanosilicate fiber

    No full text
    We report for the first time Raman amplification in a cladding-pumped fiber. The double-clad germanosilicate fiber was pumped by a Q-switched Er-Yb co-doped fiber laser at 1570 nm. The power conversion efficiency was up to 36%, with a slope of 64%

    A Unification of Models of Tethered Satellites

    Get PDF
    In this paper, different conservative models of tethered satellites are related mathematically, and it is established in what limit they may provide useful insight into the underlying dynamics. An infinite dimensional model is linked to a finite dimensional model, the slack-spring model, through a conjecture on the singular perturbation of tether thickness. The slack-spring model is then naturally related to a billiard model in the limit of an inextensible spring. Next, the motion of a dumbbell model, which is lowest in the hierarchy of models, is identified within the motion of the billiard model through a theorem on the existence of invariant curves by exploiting Moser's twist map theorem. Finally, numerical computations provide insight into the dynamics of the billiard model

    Optical fiber fabrication using novel gas-phase deposition technique

    No full text
    We report a highly versatile chemical-in-crucible preform fabrication technique suitable for gas-phase deposition of doped optical fibers. Aluminosilicate and ytterbium-doped phosphosilicate fibers are presented demonstrating the technique and its potential for realizing complex fiber designs that are suitable for the next generation of high-power fiber devices. The results show aluminum-doped fiber with numerical aperture of 0.28 and ytterbium-doped fiber with a measured slope efficiency of 84% with respect to pump launch power

    Experimental demonstration of single-mode large mode area multi-trench fiber for UV-VIS light transmission

    No full text
    Step-index optical fibers are widely used waveguides for light transmission. However, non-linear effects are always a severe challenge for optical fibers with increasing power level. This challenge is more severe at shorter wavelengths, where core size has to be much smaller in order to maintain a single mode operation. For an example, for 0.005 core refractive index with respect to cladding, a 10Āµm core diameter can ensure single mode operation at 1550nm. On other hand, core diameter has to be ~4Āµm and ~2Āµm at lambda=632nm and 300nm respectively for single mode operation. At these shorter wavelengths, photonic crystal fiber (PCF) and hollow core photonic bandgap fiber (HC-PBGF) have been proposed to address non-linear effects by offering large core diameter and air-core respectively [1-2]. However, such fibers are relatively difficult to fabricate. Moreover, presence of air-holes causes considerable difficulties in cleaving and splicing.Recently, we proposed an all-solid fiber design known as multi-trench fiber (MTF) as shown in Fig. 1(a) [3]. In this paper, we demonstrated their mode area scaling capability for UV-VIS wavelengths. Numerical simulations show the potential of achieving an effective single mode for 10Āµm and 20Āµm core diameter MTF by ensuring high loss to the higher order modes (HOMs) at ~300nm and ~632nm respectively. Fig. 1(b) shows numerically computed bending loss of a 20Āµm core MTF with trench thickness (t)=1.34Āµm, refractive index difference between core and cladding (Delta.n)=0.005, and resonant ring thickness (d)=6Āµm at 632nm. It is important to note that MTF ensures similar level of loss (as shown in Fig. 1(b)) to the HOMs even in an unbent case thanks to the resonant coupling between modes of core and resonant ring, which ensures suitability for beam delivery applications. Fig. 1(c) shows the RIP and microscope image of a 20Āµm core MTF fabricated by MCVD process in conjunction with rod-in-tube technique. Fig. 1(d) shows the measured bending loss of fiber. The loss remains lower than 0.2dB/m and 0.5dB/m at ~30cm and ~15cm bend radius respectively at ~632nm. This loss can even be reduced down with further refinement in fabrication process. We investigated the output profile of a 2m long MTF using the experimental set-up shown in Fig. 1(e) with respect to the multi-mode input beam as shown in Fig. 1(g). Fig. 1(f) shows the output for different offset launching, while fiber is coiled at ~20cm bend radius. On the other hand, Fig. 1(h) shows the output at different coil radii for optimum launching. In this paper, for the first time, to the best of our knowledge, an effective-single-mode behaviour of an all-solid and cylindrical symmetrical fiber of a large core (~20Āµm) fiber at ~632nm has been demonstrated. All-solid design and cylindrical symmetry ensure suitability for mass-scale production and easy cleaving and splicing. Further, with these advantages, a large core (~10Āµm) MTF at ~300nm as confirmed by our simulations can also be achieved and details will be presented at conference
    • ā€¦
    corecore